In: Advanced Math
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m > 1, m ∈ N such that |sn − m| = 1/3 (this says that every term of the sequence is an integer plus or minus 1/3 ). Show that the sequence sn is eventually constant, i.e. after a point all terms of the sequence are the same