Question

In: Electrical Engineering

Given a balanced three-phase delta-connected generator with positive sequence and voltage Vbc=350∠−90∘Vbc=350∠−90∘ Vrms. The generator feeds...

Given a balanced three-phase delta-connected generator with positive sequence and voltage Vbc=350∠−90∘Vbc=350∠−90∘ Vrms. The generator feeds a balanced three-phase delta-connected load having an impedance of 43.5+j27 Ω/phase. The impedance of the line connecting the generator to the load is 1.5+j1 Ω/phase.  i) Calculate the total real power consumed by the load. [5] ii) Calculate the percentage of the total available real power lost in the lines.[3]

  

Solutions

Expert Solution


Related Solutions

A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission line. The line-line voltage for the source is 100∟0° V/phase and the impedance of load is (27 + j18) Ω/phase. The transmission line has an impedance of (1 + j4) Ω/line. a) Draw the complete schematic of the power system showing the location of wattmeters. (Two-Wattmeter system is considered for this problem). Phase “a” could be considered as a reference phase. b) What must...
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4...
A balanced three-phase generator delivers 6.3 kW to a delta-connected load with impedance 13 - j23.4 Ω per phase. The magnitude of the line current ILis:
A balanced three-phase delta-connected source has a line veltage of 120 V. It is connected to...
A balanced three-phase delta-connected source has a line veltage of 120 V. It is connected to a load via a three-wire transmission line. The per-phase impedance of the delta-connected load is 30 + 120j (2. The impedance of each wire of the transmission line is 2 + 4j 2. How much power is dissipated by the load? By the transmission line? What is the power factor of the load? What is the overall power factor?
Two balanced three phase loads are connected to a busbar with 10kV line voltage at 50Hz....
Two balanced three phase loads are connected to a busbar with 10kV line voltage at 50Hz. Load A is 168kVA at cosφ = 0,85 (lagging). Load B is connected in Y and draws a complex phase current ?? = 4,79∠ − 24,5°. Calculate the total active, reactive and apparent power at the busbar. Calculate the combined cosφ at the busbar. A third balanced load is connected to the busbar.The total power at the busbar is now 288kW, cosφ = 0,87...
QUIESTION 1 A three-phase synchronous generator is connected to an infinite bus. The infinite bus voltage...
QUIESTION 1 A three-phase synchronous generator is connected to an infinite bus. The infinite bus voltage and the generated voltage are o 1.0 pu ∠0 and o 1.0pu ∠42.84 , respectively. The synchronous reactance is 0.85 pu and resistances are neglected. a) Compute power angle (δ), armature current (Is), power factor (pf), real power (P), and reactive power (Q). Draw the phasor diagram. b) If the prime mover torque is kept constant at a value corresponding to P=0.8 pu, compute...
A balanced positive-sequence wye-connected 60-Hz three-phase source has line-to-line voltages of VL = 440 V rms....
A balanced positive-sequence wye-connected 60-Hz three-phase source has line-to-line voltages of VL = 440 V rms. This source is connected to a balanced wye-connected load. Each phase of the load consists of a 0.5-H inductance in series with a 50-? resistance. Assume that the phase of Van is zero. A) Find the line-to-neutral voltage phasor Van. Enter your answer using polar notation. Express argument in degrees. B) Find the line-to-neutral voltage phasor Vbn. Enter your answer using polar notation. Express...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The load impedances are Za = 14+j3 Ω , Zb = 5-j24Ω and Zc =1+j14 Ω  and the phase a line voltage has an effective value of 18 Kv: use line-to-neutral voltage of phase A as a reference. Find the line and neutral current, also find the reactive power delivered to load and power factor.
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 420+300i Ω/ϕ ; load 2 is Δ-connected with an impedance of 2400-1780i Ω/ϕ ; and load 3 is 170.1+2201i kVA . The loads are fed from a distribution line with an impedance of 2+17i Ω/ϕ . The magnitude of the line-to-neutral voltage at the load end of the line is 23√3 kV. Part A: Calculate the total complex power at the sending end of...
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to...
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to a Y-connected load. The transmission line has an impedance of (0.02+j0.4) Ω/phase, and the load has an impedance of (4+j3) Ω per phase. Determine the;(a)line current (IL) at the load [2Marks] (b)line and phase voltage of the load[2 Marks](c)active power, reactive and apparent power [2 Marks](d) power factor and specify whether it is lagging or leading. [4 Marks]
A three-phase positive sequence Y-connected source supplies 12 kVA with a power factor of 0.75 lagging...
A three-phase positive sequence Y-connected source supplies 12 kVA with a power factor of 0.75 lagging to a parallel combination of a Y-connected load and a Δ-connected load. The Y-connected load uses 6 kVA at a power factor of 0.6 lagging and has an a-phase current of 12∠−30∘A Part A: Find the complex power per phase of the  Δ-connected load. (VA) Part B: Find the magnitude of the voltage. (Volts)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT