Question

In: Physics

A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...

A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 above the horizontal and comes to a momentary stop before sliding back down. The system is the spring, the block, the incline, and the Earth. Ignore air resistance. A) Sketch the situation and label all variables for: i. the spring and block before the spring is released ii. the block sliding on the horizontal surface iii. the block sliding up the incline B) List all known quantities. C) Draw the free body diagram for the block sliding up the incline. D) What is the potential energy of the spring before it is released? E) What is the kinetic energy and the speed of the block as it slides on the horizontal surface after the spring has pushed it? F) At what height does the block stop on the incline? G) If the incline were rough, how would the stopping height of the block compare to the stopping height when the incline is frictionless? Explain using energy.

Solutions

Expert Solution


Related Solutions

A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 above the horizontal and comes to a momentary stop before sliding back down. The system is the...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 degrees above the horizontal and comes to a momentary stop before sliding back down. The system is...
a 100 kg student is compressed 50 cm on a spring with a spring constant of...
a 100 kg student is compressed 50 cm on a spring with a spring constant of k = 80,000 N/m. He is on top of a 10 m frictionless hill. He then is released from rest. He goes down to the bottom of the hill before sliding up a 30° frictionless hill. a. (8 pts) Find the speed of the student when he reaches the bottom of the hill. b. (9 pts) Find the distance D the student travels up...
A light spring of force constant 4.45 N/m is compressed by 8.00 cm and held between...
A light spring of force constant 4.45 N/m is compressed by 8.00 cm and held between a 0.250 kg block on the left and a 0.450 kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is the following. In each case, assume...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed...
In a spring gun system, a spring with a spring force constant 420 N/mN/m  , is compressed 0.13 mm . When fired, 80.9 %% of the elastic potential energy stored in the spring is eventually converted into kinetic energy of a 6.10×10−2 kgkg uniform ball that is rolling without slipping at the base of a ramp. The ball continues to roll without slipping up the ramp with 89.6 %% of the kinetic energy at the bottom converted into an increase in...
A 190 g block attached to a spring with spring constant 2.8 N/m oscillates horizontally on...
A 190 g block attached to a spring with spring constant 2.8 N/m oscillates horizontally on a frictionless table. Its velocity is 20 cm/s when x0 = -5.3 cm . a) What is the amplitude of oscillation? b) What is the block's maximum acceleration? c) What is the block's position when the acceleration is maximum? d) What is the speed of the block when x1 = 2.7 cm ?
A spring is compressed by 15 cm, which requires 150 N of force. What is the...
A spring is compressed by 15 cm, which requires 150 N of force. What is the spring constant of the spring? How much potential energy is stored in the spring? A 20 kg box is attached to the spring. This arrangement is placed such that the spring is horizontal and the box will slide along a frictionless, horizontal track. What is the maximum speed of the box after the spring is released?
A block of 0.42 kg attached to a horizontal spring whose spring constant is 130.00 N/m...
A block of 0.42 kg attached to a horizontal spring whose spring constant is 130.00 N/m has a simple harmonic motion (SHM) with an amplitude of 0.11 m. The figure above shows one complete cycle of the SHM, and the vertical green dashed line indicates the equilibrium position of the block. (d) Calculate the block 's velocity at 0.045 s. The velocity can be positive, zero or negative. Notice that the unit of angular frequency ω is rad/s, the unit...
1. A spring (k = 30 N/m) is compressed 5 cm and launches a 50 g...
1. A spring (k = 30 N/m) is compressed 5 cm and launches a 50 g toy straight up. How high does the toy fly? 2. Two blocks are attached together with a piece of string. Block #1 (3 kg) slides along a rough incline of 30º and block #2 (2 kg) hangs off the end of the incline. If the blocks accelerate at 4.5 m/s2 in the directions shown, determine the tension in the string and the coefficient of...
1. If you compress a spring of spring constant 223 N/m by 1.29 cm, what is...
1. If you compress a spring of spring constant 223 N/m by 1.29 cm, what is the elastic potential energy of the spring? 2. You have a piano of mass 1,946 kg, which is suspended 14 m above the ground. If we decide that the zero of our height coordinates is at the ground, what is the gravitational potential energy of the piano? 3. You have a kinetic friction force of 42.5 acting on a box that is moving across...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT