Question

In: Physics

A block of 0.42 kg attached to a horizontal spring whose spring constant is 130.00 N/m...

A block of 0.42 kg attached to a horizontal spring whose spring constant is 130.00 N/m has a simple harmonic motion (SHM) with an amplitude of 0.11 m. The figure above shows one complete cycle of the SHM, and the vertical green dashed line indicates the equilibrium position of the block.

(d) Calculate the block 's velocity at 0.045 s. The velocity can be positive, zero or negative.

Notice that the unit of angular frequency ω is rad/s, the unit of time is second, therefore the unit of (ω×t) is radian.

(f) Calculate the block 's position at 0.223 s. The position can be positive, zero or negative.

(g) Calculate the block 's velocity at 0.223 s. The velocity can be positive, zero or negative.

(h) Calculate the block 's acceleration at 0.223 s. The acceleratio can be positive, zero or negative.

Solutions

Expert Solution

please rate it up, Thanks!


Related Solutions

a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m...
a block of mass m=0.10 kg attached to a spring whose spring constant is k=2.5 N/m . At t=0.2s, the displacement x=-0.3m, and the velocity v=-2.0m/s a) find the equation of displacement as a function of time b) sketch the displacement as a function of time for the first cycle starting t=0s
A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
A 1.40 kg block is attached to a spring with spring constant 16.5 N/m . While...
A 1.40 kg block is attached to a spring with spring constant 16.5 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 43.0 cm/s . What are The block's speed at the point where x= 0.350 A?
A 1.25 kg block is attached to a spring with spring constant 18 N/m . While...
A 1.25 kg block is attached to a spring with spring constant 18 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 42 cm/s What is the amplitude of the subsequent oscillations? What is the block's speed at the point where x=0.25A?
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant...
The displacement of a block of mass 1.280 kg attached to a spring whose spring constant is 50 N/m is given by x = A cos ωt, where A = 12 cm. In the first complete cycle, find the values of x and t at which the kinetic energy is equal to one half the potential energy.
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
When a 5 kg mass is attached to a spring whose constant is 180 N/m, it...
When a 5 kg mass is attached to a spring whose constant is 180 N/m, it comes to rest in the equilibrium position. Starting at  t = 0, a force equal to  f (t)  =  20e−3t cos 6t  is applied to the system. In the absence of damping, (a) find the position of the mass when  t = π. (b) what is the amplitude of vibrations after a very long time
When a 6 kg mass is attached to a spring whose constant is 24 N/m, it...
When a 6 kg mass is attached to a spring whose constant is 24 N/m, it comes to rest in the equilibrium position. Starting at  t = 0, a force equal to  f (t)  =  42e−7t cos 4t  is applied to the system. In the absence of damping, (a) find the position of the mass when  t = π. (b) what is the amplitude of vibrations after a very long time?
When a 6 kg mass is attached to a spring whose constant is 294 N/m, it...
When a 6 kg mass is attached to a spring whose constant is 294 N/m, it comes to rest in the equilibrium position. Starting at  t = 0, a force equal to  f (t)  =  12e−4t cos 3t  is applied to the system. In the absence of damping, (a) find the position of the mass when  t = π. (b) what is the amplitude of vibrations after a very long time?
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 10 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.4 kN/m. The block is pulled to the right so that the spring is stretched 5.8 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 38 N. (a) What is the kinetic energy of the block when it has moved 2.2 cm from...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT