Question

In: Physics

1. If you compress a spring of spring constant 223 N/m by 1.29 cm, what is...

1. If you compress a spring of spring constant 223 N/m by 1.29 cm, what is the elastic potential energy of the spring?

2. You have a piano of mass 1,946 kg, which is suspended 14 m above the ground. If we decide that the zero of our height coordinates is at the ground, what is the gravitational potential energy of the piano?

3. You have a kinetic friction force of 42.5 acting on a box that is moving across a rough table. If the box slows to a stop in 19.6 cm, how much work is done by friction?

4. Find the scalar product of A⇀⋅B⇀

where A⇀=10.2iˆ+ 9.8jˆ and B⇀= 4.7iˆ+9.3jˆ

Solutions

Expert Solution

1)

We have the spring is compressed by a distance of,

Also the spring constant of the spring,

So,we have the potential energy stored in the spring,

the potential energy stored in the spring,

2)

We have the mass of piano,

Also taken that the zero of the hieght coordinates for the ground level.

Also,the hieght of the piano from the ground,

So,The potential energy of the piano,

3)

Here the box is moving upon the surface the rough table.and due to the kinetic frictional force of 42.5N which opposes the motion of the box and directing opposite to the displacement or motion of the box,doing a negetive work on the box reduces its kinetic energy,and stops or comes to rest after travelling a distance of 1.29cm.

So,Work done by the frictional force,(-ve sign indicates the negetive work)

So,The work done by the frictional force,.

d)

Given the vector,

And vector,

So,to find the scalar or dot product of the vectors,

So,The scalar product of the vectors,


Related Solutions

A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 above the horizontal and comes to a momentary stop before sliding back down. The system is the...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 above the horizontal and comes to a momentary stop before sliding back down. The system is the...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden...
A horizontal spring with a spring constant of 190 N/cm is compressed 6.3 cm. A wooden block with a mass of 1.5 kg is placed in front of and in contact with the spring. When the spring is released it pushes the block, which slides on a frictionless horizontal surface for some distance. The block then slides up a frictionless incline of 27 degrees above the horizontal and comes to a momentary stop before sliding back down. The system is...
A light spring of force constant 4.45 N/m is compressed by 8.00 cm and held between...
A light spring of force constant 4.45 N/m is compressed by 8.00 cm and held between a 0.250 kg block on the left and a 0.450 kg block on the right. Both blocks are at rest on a horizontal surface. The blocks are released simultaneously so that the spring tends to push them apart. Find the maximum velocity each block attains if the coefficient of kinetic friction between each block and the surface is the following. In each case, assume...
The spring (force) constant of HF is 970 N/m (1 N = 1 kg m s2...
The spring (force) constant of HF is 970 N/m (1 N = 1 kg m s2 ). (A) Calculate the fundamental frequency (expressed in units of cm-1 ) and the zero point energy (in energy units, J). (B) Earlier in the term we discussed the relationship between the energy and the position and momentum uncertainties. For the harmonic oscillator case, it would be E ≥ ((Δp) 2 / 2µ) + (1 / 2) µω2 (Δx) 2 (Equation 1) The ground...
A spring has a Hooke's law spring constant of 3.4 N/m. If you load it with...
A spring has a Hooke's law spring constant of 3.4 N/m. If you load it with 1.3 kg, how far will it extend from its equilibrium length? A spring 10 cm long extends 0.5 cm when a mass of 8 kg is hung from it. Suppose you made an similar spring of the same material, but twice as long. How much would it extend with the same mass? If you apply a force {f} newtons on a spring, and it...
1. A mass of 0.019 kg attached to a spring with spring constant 27.0 N/m is...
1. A mass of 0.019 kg attached to a spring with spring constant 27.0 N/m is pulled to the right 8.0 cm and released. The mass oscillates with a frequency of 6.0 Hz. If the mass is pulled to the right 16.0 cm before being released, what is the frequency? a. 6.0 Hz b. 3.0 Hz c. 1.5 Hz d. 12 Hz e. 24 Hz 2. A window loses power/heat energy through a pane of glass to the cold outside....
1. A vertical spring has a spring constant of 2500 N/m. A ball with a mass...
1. A vertical spring has a spring constant of 2500 N/m. A ball with a mass of 0.25 kg is on top of the spring. Use energy conservation to answer the following questions. Sketch the situation for each part. A. If the spring is compressed 8.3 cm how much energy is stored in the spring? B. When you release the spring, it pushes the ball upward. What is the speed of the ball at the instant it leaves the spring?...
A spring with a spring constant 4 N/m is loaded with a 2 kgmass and allowed...
A spring with a spring constant 4 N/m is loaded with a 2 kgmass and allowed to reach equilibrium. It is then displaced 1 meter downward and released. Suppose the mass experiences a damping force in Newtons equal to 1 times the velocity at every point and an external force of F(t)=4sin(3t) driving the system. Set up a differential equation that describes this system and find a particular solution to this non-homogeneous differential equation:
A spring cannon has a spring constant of 350 N / m and the bullet weighs...
A spring cannon has a spring constant of 350 N / m and the bullet weighs 10 grams. What is the maximum height, measured above the equilibrium position of the spring, that the spring cannon can shoot the ball up to if the maximum compression of the spring is 3.0 cm? (Continuation of the previous question) Before firing, the spring is compressed 2.0 centimeters in relation to the equilibrium position and the firing angle is set to ?? = 41...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT