In: Finance
a) | $ 2,33,508 | ||||||||||
Working: | |||||||||||
Loan amount is the present value of monthly payment. | |||||||||||
Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
= | (1-(1+0.005)^-360)/0.005 | i | 6%/12 | = | 0.005 | ||||||
= | 166.7916144 | n | 30*12 | = | 360 | ||||||
Loan amount | = | Monthly payment | * | Present value of annuity of 1 | |||||||
= | $ 1,400 | * | 166.7916 | ||||||||
= | $ 2,33,508 | ||||||||||
b) | $ 5,04,000 | ||||||||||
Working; | |||||||||||
Total payment on the loan | = | Monthly payment | * | Number of months | |||||||
= | $ 1,400 | * | 360 | ||||||||
= | $ 5,04,000 | ||||||||||
c) | $ 2,70,492 | ||||||||||
Working: | |||||||||||
Interest | = | Total repayment | - | Amount borrowed | |||||||
= | $ 5,04,000 | - | $ 2,33,508 | ||||||||
= | $ 2,70,492 | ||||||||||