Question

In: Math

Construct the confidence interval for the population mean muμ. cequals=0.980.98​, x overbar equals 8.2x=8.2​, sigmaσequals=0.90.9​, and...

Construct the confidence interval for the population mean

muμ.

cequals=0.980.98​,

x overbar equals 8.2x=8.2​,

sigmaσequals=0.90.9​,

and

nequals=5858

A

9898​%

confidence interval for

muμ

is

left parenthesis nothing comma nothing right parenthesis .,.

​(Round to two decimal places as​ needed.)

Solutions

Expert Solution

Solution :

Given that,

Point estimate = sample mean = = 8.2

Population standard deviation =    = 0.9

Sample size = n =58

At 98% confidence level the z is ,

= 1 - 98% = 1 - 0.98 = 0.02

/ 2 = 0.02/ 2 = 0.01

Z/2 = Z0.01 = 2.326 ( Using z table ( see the 0.01 value in standard normal (z) table corresponding z value is 2.326 )

Margin of error = E = Z/2 * ( /n)

= 2.326 * ( 0.9 /   58)

E=0.27
At 98% confidence interval estimate of the population mean
is,

- E < < + E

8.2 - 0.27   <   < 8.2 + 0.27

7.93 <   < 8.47

(7.93 , 8.47)


Related Solutions

Construct a 95​% confidence interval to estimate the population mean with x overbar equals 104 and...
Construct a 95​% confidence interval to estimate the population mean with x overbar equals 104 and sigma equals 28 for the following sample sizes. ​ a) n equals 30 ​b) n equals 48 ​c) n equals 66
Construct a 98​% confidence interval to estimate the population mean with x overbar equals 57 and...
Construct a 98​% confidence interval to estimate the population mean with x overbar equals 57 and sigma equals 11 for the following sample sizes. ​a) n equals 38 ​b) n equals 41 ​c) n equals 66
Construct the confidence interval for the population mean C equals 0.95, x overbar equals 16.6 S...
Construct the confidence interval for the population mean C equals 0.95, x overbar equals 16.6 S equals 8.0, and N equals 55
Construct the confidence interval for the population mean mu. cequals0.98​, x overbar equals 16.9​, sigmaequals9.0​, and...
Construct the confidence interval for the population mean mu. cequals0.98​, x overbar equals 16.9​, sigmaequals9.0​, and nequals50 A 98​% confidence interval for mu is left parenthesis nothing comma nothing right parenthesis . ​(Round to one decimal place as​ needed.)
Construct the confidence interval for the population mean mu . cequals 0.98​, x overbar equals 8.3...
Construct the confidence interval for the population mean mu . cequals 0.98​, x overbar equals 8.3 ​, sigma equals0.7​, and nequals 50 A 98 ​% confidence interval for mu is left parenthesis nothing comma nothing right parenthesis . ​(Round to two decimal places as​ needed.
Construct the confidence interval for the population mean mu. cequals0.90​, x overbar equals 6.8​, sigmaequals0.2​, and...
Construct the confidence interval for the population mean mu. cequals0.90​, x overbar equals 6.8​, sigmaequals0.2​, and nequals59
Construct the confidence interval for the population mean μ. c=0.98 , (overbar above x) x=7.3 ,...
Construct the confidence interval for the population mean μ. c=0.98 , (overbar above x) x=7.3 , σ=0.3 , and n=50 A 98 % confidence interval for μ IS (____,_____) (Round to two decimal places as needed.)
Construct a 99​% confidence interval to estimate the population mean using the data below. X (overbar)...
Construct a 99​% confidence interval to estimate the population mean using the data below. X (overbar) = 22 s = 3.2 n = 13 What assumptions need to be made about this​ population? The 99​% confidence interval for the population mean is from a lower limit of __ to an upper limit of __. (round to two decimal places as needed.)
Construct an 80​% confidence interval to estimate the population mean when x overbar=131 and s​ =...
Construct an 80​% confidence interval to estimate the population mean when x overbar=131 and s​ = 28 for the sample sizes below. ​ a) n=20 ​b) n=50 ​ c) n=80
Construct a confidence interval of the population proportion at the given level of confidence. x equals...
Construct a confidence interval of the population proportion at the given level of confidence. x equals x= 120 120​, n equals n= 1100 1100​, 90 90​% confidence
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT