In: Math
Construct an 80% confidence interval to estimate the population mean when x overbar=131 and s = 28 for the sample sizes below.
a) n=20
b) n=50
c) n=80
Solution :
Given that,
Point estimate = sample mean = = 131
sample standard deviation = s = 28
a) sample size = n = 20
Degrees of freedom = df = n - 1 = 20 - 1 = 19
At 80% confidence level
= 1 - 80%
=1 - 0.80 =0.20
/2
= 0.10
t/2,df
= t0.10,19 = 1.328
Margin of error = E = t/2,df * (s /n)
= 1.328 * (28 / 20)
Margin of error = E = 8.31
The 80% confidence interval estimate of the population mean is,
± E
= 131 ± 8.31
= (122.69, 139.31)
b) sample size = n = 50
Degrees of freedom = df = n - 1 = 50 - 1 = 49
t/2,df = t0.10,49 = 1.299
Margin of error = E = t/2,df * (s /n)
= 1.299 * (28 / 50)
Margin of error = E = 5.14
The 80% confidence interval estimate of the population mean is,
± E
= 131 ± 5.14
= (125.86, 136.14)
c) sample size = n = 80
Degrees of freedom = df = n - 1 = 80 - 1 = 79
t/2,df = t0.10,79 = 1.292
Margin of error = E = t/2,df * (s /n)
= 1.292 * (28 / 80)
Margin of error = E = 4.04
The 80% confidence interval estimate of the population mean is,
± E
= 131 ± 4.04
= (126.96, 135.04)