In: Chemistry
An industrial chemist introduces 2.5 atm H2 and 2.5 atm CO2 into a 1.00-L container at 25.0°C and then raises the temperature to 700.0°C, at which Keq = 0.534: H2(g) + CO2(g) ⇔ H2O(g) + CO(g) How many grams of H2 are present after equilibrium is established?
Assuming ideal gas behavior partial pressure and amount of
substance can be given as---
P.X∙V = n.X∙R∙T
So ,[X] = n.X/V = P.X/(R∙T)
Since both H2 and CO2 are introduced at the
same initial partial pressure they have the same initial
concentration given by---
2.5 atm = 2.5 x 101325 Pa, R = 8.3145 Pa∙m3∙K-1∙mol-1 , T = ( 25 +273) K = 298 K
C0 = 2.5 * 101325 Pa / ( 8.3145 Pa∙m3∙K-1∙mol-1 * 298 K)
=> C0= 253312.5 / 2477.721 mol∙m-3
=> C0 = 102.2 mol∙m-3
=> C0 = 0.1022 M
The reaction is--
H2 (g) + CO2 (g) <----->
H2O(g) + CO(g)
So the concentrations in equilibrium state satisfy the relation
Keq = ( [H2O]∙[CO] ) / (
[H2]∙[CO2] )
ICE table can be written as---
_____ [H2]______[CO2]____
[H2O]_____[CO]
I_____ C0.............. C0............. 0................ 0
C_____ - x............. - x........... + x............. + x
E_____C0 - x......... C0 - x...........
x............... x
Now, Keq = ( x∙ *x ) / ( (C0 -
x)*(C0 - x) )
=> Keq = x2 /(C0 -
x)2
=>Keq
= x /(C0 - x)
=> (C0 - x) *Keq
= x
=> C0*Keq - x *Keq = x
=> x ( 1 + Keq)
= C0*Keq
=> x = C0∙Keq
/ (1 + Keq)
Now,
The concentration of hydrogen in equilibrium state is:
[H2] = C0 - x
=> [H2] = C0 - {C0∙Keq
/(1 + Keq)
}
= C0 ∙/(1 + Keq)
= 0.1022 M / (1 + 0.534)
= 0.1022 M / 1 + 0.73
= 0.1022 M / 1.73
= 0 0591 M
So the amount of hydrogen in the container is
nH2 = [H2]∙V = 0.0591 mol/L x 1.00 L = 0.0591 mol
and the mass of hydrogen in the equilibrium mixture will be---
mH2 (mass) =moles x molar mass = nH2 x MH2 = 0.0591 mol x 2.0 g/mol = 0.1182 g