Question

In: Physics

Suppose that a cannon tower of 1000 feet height was erected at the origin of the...

Suppose that a cannon tower of 1000 feet height was erected at the origin of the coordinate space. The speed of the cannonballs launched by the tower is 1000 feet per second. An armored vehicle is patrolling in a circular path around the tower 8000 feet away at a speed of 10 feet per second. Coordinates was chosen such that at time zero the location of the vehicle is (8000, 0, 0).

(a) Describe the motion of the vehicle with a vector valued function with respect to time t.

(b) At time zero, a cannonball is launched from the tower in the direction of u = <u1,u2,u3>, where ||u|| = 1. Ignoring all resistive forces, describe the motion of the cannonball with a vector valued function with respect to time t. Gravitational acceleration g = 32 ft/s2.

(c) Determine whether it is possible for the cannonball to hit the vehicle. If it is, find the direction in which the cannonball should be launched, and express your answer as a unit vector.

Solutions

Expert Solution


Related Solutions

If the tower is 45 feet in height, how far is the partner from the base of the tower?
From the top of a fire tower, a forest ranger sees his partner on the ground at an angle of depression of 40 degrees. If the tower is 45 feet in height, how far is the partner from the base of the tower?
The mean height of an adult giraffe is 18 feet. Suppose that the distribution is normally...
The mean height of an adult giraffe is 18 feet. Suppose that the distribution is normally distributed with standard deviation 0.8 feet. Let X be the height of a randomly selected adult giraffe. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X ~ N(,) b. What is the median giraffe height?  ft. c. What is the Z-score for a giraffe that is 20 foot tall? d. What is the probability that a randomly...
The mean height of an adult giraffe is 18 feet. Suppose that the distribution is normally...
The mean height of an adult giraffe is 18 feet. Suppose that the distribution is normally distributed with standard deviation 1 feet. Let X be the height of a randomly selected adult giraffe. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X ~ N( , ) b. What is the median giraffe height? c. What is the Z-score for a giraffe that is 19 foot tall? 8.5 Incorrect d. What is the...
The mean height of an adult giraffe is 17 feet. Suppose that the distribution is normally...
The mean height of an adult giraffe is 17 feet. Suppose that the distribution is normally distributed with standard deviation 1 feet. Let X be the height of a randomly selected adult giraffe. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X ~ N(Correct,Correct) b. What is the median giraffe height?  ft. c. What is the Z-score for a giraffe that is 18.5 foot tall? d. What is the probability that a randomly...
The mean height of an adult giraffe is 17 feet. Suppose that the distribution is normally...
The mean height of an adult giraffe is 17 feet. Suppose that the distribution is normally distributed with standard deviation 0.9 feet. Let X be the height of a randomly selected adult giraffe. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X ~ N(___,______) b. What is the median giraffe height? _____ft. c. What is the Z-score for a giraffe that is 19 foot tall? d. What is the probability that a...
The mean height of an adult giraffe is 18 feet. Suppose that the distribution is normally...
The mean height of an adult giraffe is 18 feet. Suppose that the distribution is normally distributed with standard deviation 0.8 feet. Let X be the height of a randomly selected adult giraffe. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X ~ N(,) b. What is the median giraffe height? ft. c. What is the Z-score for a giraffe that is 21 foot tall? d. What is the probability that a...
The mean height of an adult giraffe is 19 feet. Suppose that the distribution is normally...
The mean height of an adult giraffe is 19 feet. Suppose that the distribution is normally distributed with standard deviation 0.9 feet. Let X be the height of a randomly selected adult giraffe. Round all answers to 4 decimal places where possible. a. What is the distribution of X? X ~ N(,) b. What is the median giraffe height? ft. c. What is the Z-score for a giraffe that is 21 foot tall? d. What is the probability that a...
Suppose f is a function giving the altitude (height above ground) in feet of a small...
Suppose f is a function giving the altitude (height above ground) in feet of a small plane, depending on time t in seconds. Select the best interpretation of each value, function, or expression below. (a) f(50)=1000 means the altitude of the plane is 1000 feet after 50 secondsthe altitude of the plane is increasing at a rate of 50 feet per second after 1000 seconds    the altitude of the plane is 50 feet after 1000 secondsthe altitude of the plane is...
A cannonball is fired horizontally from the top of a cliff. The cannon is at height...
A cannonball is fired horizontally from the top of a cliff. The cannon is at height H = 100m above ground level, and the ball is fired with initial horizontal speed v0=0. Assume acceleration due to gravity to be g = 9.80 m/s2. a)Assume that the cannon is fired at time t=0 and that the cannonball hits the ground at time tg. What is the y position of the cannonball at the time tg/2? b) Given that the projectile lands...
Suppose a ball has a maximum height of 24 feet after 11 seconds of travel. This...
Suppose a ball has a maximum height of 24 feet after 11 seconds of travel. This same ball will have a height of 8 feet after 20 seconds of travel. Find Upper H left parenthesis Upper T right parenthesis equals AT squared plus BT plus Upper C commaH(T)=AT2+BT+C, where​ H(T) is the height of the ball in inches after T seconds. Answers in Exact Form.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT