Question

In: Advanced Math

1.   Solve the following system: 2x1- 6x2- x3 = -38 -3x1–x2 +7x3 = -34 -8x1 +x2...


1.   Solve the following system:

2x1- 6x2- x3 = -38
-3x1–x2 +7x3 = -34
-8x1 +x2 – 2x3 = -20

By:
a.   LU Factorization
b.   Gauss-Siedel Method, error less that10-4

Hint (pivoting is needed, switch rows).

Solutions

Expert Solution


Related Solutions

Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2...
Consider the linear system of equations 2x1 − 6x2 − x3 = −38 −3x1 − x2 + 7x3 = −34 −8x1 + x2 − 2x3 = −20 With an initial guess x (0) = [0, 0, 0]T solve the system using Gauss-Seidel method.
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 -...
Given the following LP max z = 2x1 + x2 + x3 s. t. 3x1 - x2 <= 8 x2 +x3 <= 4 x1,x3 >= 0, x2 urs (unrestricted in sign) A. Reformulate this LP such that 1)All decision variables are non-negative. 2) All functional constraints are equality constraints B. Set up the initial simplex tableau. C. Determine which variable should enter the basis and which variable should leave.
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 +...
Consider the linear system of equations below 3x1 − x2 + x3 = 1 3x1 + 6x2 + 2x3 = 0 3x1 + 3x2 + 7x3 = 4 i. Use the Gauss-Jacobi iterative technique with x (0) = 0 to find approximate solution to the system above up to the third step ii. Use the Gauss-Seidel iterative technique with x (0) = 0 to find approximate solution to the third step
Consider the following linear optimization model. Z = 3x1+ 6x2+ 2x3 st       3x1 +4x2 + x3...
Consider the following linear optimization model. Z = 3x1+ 6x2+ 2x3 st       3x1 +4x2 + x3 ≤2            x1+ 3x2+ 2x3 ≤ 1       X1, x2, x3 ≥0                (10) Write the optimization problem in standard form with the consideration of slack variables.                (30) Solve the problem using simplex tableau method.                (10) State the optimal solution for all variables.
Solve the following system of equations using LU factorization without partial pivoting: 2x1 - 6x2 -...
Solve the following system of equations using LU factorization without partial pivoting: 2x1 - 6x2 - x3 = -38 -3x1 - x2 + x3 = -34 -8x1 + x2 - 2x3 = -20
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0...
4.Maximize: Z = 2X1+ X2-3X3 Subject to: 2X1+ X2= 14 X1+ X2+ X3≥6 X1, X2, X3≥0 Solve the problem by using the M-technique.
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 −...
4-Consider the following problem: max − 3x1 + 2x2 − x3 + x4 s.t. 2x1 − 3x2 − x3 + x4 ≤ 0 − x1 + 2x2 + 2x3 − 3x4 ≤ 1 − x1 + x2 − 4x3 + x4 ≤ 8 x1, x2, x3, x4 ≥ 0 Use the Simplex method to verify that the optimal objective value is unbounded. Make use of the final tableau to construct an unbounded direction..
Solve the following set of equations with LU factorization with pivoting: 3x1 -2x2 + x3 =...
Solve the following set of equations with LU factorization with pivoting: 3x1 -2x2 + x3 = -10 2x1 + 6x2- 4x3 = 44 -8x1 -2x2 + 5x3 = -26 Please show all steps
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove...
Let U = {(x1,x2,x3,x4) ∈F4 | 2x1 = x3, x1 + x4 = 0}. (a) Prove that U is a subspace of F4. (b) Find a basis for U and prove that dimU = 2. (c) Complete the basis for U in (b) to a basis of F4. (d) Find an explicit isomorphism T : U →F2. (e) Let T as in part (d). Find a linear map S: F4 →F2 such that S(u) = T(u) for all u ∈...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT