In: Chemistry
Consider the titration of a 22.0 −mL sample of 0.105 M HC2H3O2 with 0.130 M NaOH. Determine each of the following.
Part E
the pH at the equivalence point Express your answer using two decimal places.
Part F
the pH after adding 6.00 mL of base beyond the equivalence point Express your answer using two decimal places.
E)
find the volume of NaOH used to reach equivalence point
M(HC2H3O2)*V(HC2H3O2) =M(NaOH)*V(NaOH)
0.105 M *22.0 mL = 0.13M *V(NaOH)
V(NaOH) = 17.7692 mL
Given:
M(HC2H3O2) = 0.105 M
V(HC2H3O2) = 22 mL
M(NaOH) = 0.13 M
V(NaOH) = 17.7692 mL
mol(HC2H3O2) = M(HC2H3O2) * V(HC2H3O2)
mol(HC2H3O2) = 0.105 M * 22 mL = 2.31 mmol
mol(NaOH) = M(NaOH) * V(NaOH)
mol(NaOH) = 0.13 M * 17.7692 mL = 2.31 mmol
We have:
mol(HC2H3O2) = 2.31 mmol
mol(NaOH) = 2.31 mmol
2.31 mmol of both will react to form C2H3O2- and H2O
C2H3O2- here is strong base
C2H3O2- formed = 2.31 mmol
Volume of Solution = 22 + 17.7692 = 39.7692 mL
Kb of C2H3O2- = Kw/Ka = 1*10^-14/1.8*10^-5 = 5.556*10^-10
concentration ofC2H3O2-,c = 2.31 mmol/39.7692 mL = 0.0581M
C2H3O2- dissociates as
C2H3O2- + H2O -----> HC2H3O2 + OH-
0.0581 0 0
0.0581-x x x
Kb = [HC2H3O2][OH-]/[C2H3O2-]
Kb = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Kb = x*x/(c)
so, x = sqrt (Kb*c)
x = sqrt ((5.556*10^-10)*5.809*10^-2) = 5.681*10^-6
since c is much greater than x, our assumption is correct
so, x = 5.681*10^-6 M
[OH-] = x = 5.681*10^-6 M
use:
pOH = -log [OH-]
= -log (5.681*10^-6)
= 5.2456
use:
PH = 14 - pOH
= 14 - 5.2456
= 8.7544
Answer: 8.75
F)
Given:
M(HC2H3O2) = 0.105 M
V(HC2H3O2) = 22 mL
M(NaOH) = 0.13 M
V(NaOH) = 6 mL
mol(HC2H3O2) = M(HC2H3O2) * V(HC2H3O2)
mol(HC2H3O2) = 0.105 M * 22 mL = 2.31 mmol
mol(NaOH) = M(NaOH) * V(NaOH)
mol(NaOH) = 0.13 M * 6 mL = 0.78 mmol
We have:
mol(HC2H3O2) = 2.31 mmol
mol(NaOH) = 0.78 mmol
0.78 mmol of both will react
excess HC2H3O2 remaining = 1.53 mmol
Volume of Solution = 22 + 6 = 28 mL
[HC2H3O2] = 1.53 mmol/28 mL = 0.0546M
[C2H3O2-] = 0.78/28 = 0.0279M
They form acidic buffer
acid is HC2H3O2
conjugate base is C2H3O2-
Ka = 1.8*10^-5
pKa = - log (Ka)
= - log(1.8*10^-5)
= 4.745
use:
pH = pKa + log {[conjugate base]/[acid]}
= 4.745+ log {2.786*10^-2/5.464*10^-2}
= 4.452
Answer: 4.45