In: Math
You wish to test the following claim (HaHa) at a significance
level of α=0.05α=0.05.
Ho:μ1=μ2Ho:μ1=μ2
Ha:μ1>μ2Ha:μ1>μ2
You obtain the following two samples of data.
Sample #1 | Sample #2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
What is the p-value for this sample? For this calculation, use the
degrees of freedom reported from the technology you are using.
(Report answer accurate to four decimal places.)
p-value =
The p-value is...
This test statistic leads to a decision to...
As such, the final conclusion is that...
Ho : µ1 - µ2 = 0
Ha : µ1-µ2 > 0
Level of Significance , α =
0.05
Sample #1 ----> 1
mean of sample 1, x̅1= 77.09
standard deviation of sample 1, s1 =
11.32033286
size of sample 1, n1= 38
Sample #2 ----> 2
mean of sample 2, x̅2= 70.868
standard deviation of sample 2, s2 =
18.81
size of sample 2, n2= 40
difference in sample means = x̅1-x̅2 =
77.092 - 70.8675 =
6.2246
std error , SE = √(s1²/n1+s2²/n2) =
3.4958
t-statistic = ((x̅1-x̅2)-µd)/SE = (
6.2246 / 3.4958 ) =
1.781
------------------------------
p-value = 0.0399
[excel function: =T.DIST.RT(t stat,df) ]
----------------------------------
The p-value is...
------------------
This test statistic leads to a decision to...
-----------------