In: Math
You wish to test the following claim (HaHa) at a significance
level of α=0.05α=0.05.
      Ho:μ1=μ2Ho:μ1=μ2
      Ha:μ1>μ2Ha:μ1>μ2
You obtain the following two samples of data.
| Sample #1 | Sample #2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
  | 
  | 
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
What is the p-value for this sample? For this calculation, use the
degrees of freedom reported from the technology you are using.
(Report answer accurate to four decimal places.)
p-value =
The p-value is...
This test statistic leads to a decision to...
As such, the final conclusion is that...
Ho :   µ1 - µ2 =   0  
       
Ha :   µ1-µ2 >   0  
       
          
       
Level of Significance ,    α =   
0.05          
          
       
Sample #1   ---->   1  
       
mean of sample 1,    x̅1=   77.09  
       
standard deviation of sample 1,   s1 =   
11.32033286          
size of sample 1,    n1=   38  
       
          
       
Sample #2   ---->   2  
       
mean of sample 2,    x̅2=   70.868  
       
standard deviation of sample 2,   s2 =   
18.81          
size of sample 2,    n2=   40  
       
          
       
difference in sample means = x̅1-x̅2 =   
77.092   -   70.8675   =  
6.2246
          
       
std error , SE =    √(s1²/n1+s2²/n2) =   
3.4958          
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
6.2246   /   3.4958   ) =  
1.781
------------------------------

p-value =        0.0399  
[excel function: =T.DIST.RT(t stat,df) ]
----------------------------------
The p-value is...
------------------
This test statistic leads to a decision to...
-----------------