Question

In: Physics

In an experiment electrons are released with a kinetic energy of 2.8 eV. The amazing physicists...

In an experiment electrons are released with a kinetic energy of 2.8 eV. The amazing physicists doing the experiments are increasing the wavelength by 50%. Do you remember what happens? Are the photoelectrons faster or slower? The energy now is 0.44 eV.

A) Based on that information, what is the material of the cathode? (calculate the work function and compare to table 28.1 in our textbook).

B) What is the initial wavelength of the light?

C) When you go a few pages back in the textbook you can find out the temperature of a physical object radiating at that wavelength

Solutions

Expert Solution

Photoelectric effect can be represented by the equation
KE = hc/ - w
KE is the kinetic energy of the electron, is the wavelength of the incident photons and w is the work function, which is the minimum energy needed to remove an electron form the cathode, h is Plank's constant and c is the velocity of the light
Case 1
KE = 2.8 eV and wavelength is ,
so, 2.8 eV = hc/ - w ...(1)
Case 2
KE = 0.44 eV and wavelength is 1.5 (wavelength increased by 50%)
So, 0.44 eV = hc/1.5 - w (2)
Photoelectrons will be slower since its kinetic energy decreased

If we substitute the values of h and c, we will get
hc = 1.98 x 10-25 Jm
?Since the unit of KE is in eVs, we can convert J.m into eV.nm
hc = 1240 eV nm, [ 1 eV = 1.6 x 10-19 J and 1 nm = 10-9 nm.

A)
Multiply eqn (2) with 1.5 and subtracting it from (1), we will get
(1) - 1.5 x (2) gives
2.8 - 1.5 x 0.44 = 0.5 w
w = 4.28 eV
Gold has a work function in this range (4.26


Related Solutions

Electrons in an electron microscope have a kinetic energy of 1.20 105 eV. (a) Find the...
Electrons in an electron microscope have a kinetic energy of 1.20 105 eV. (a) Find the de Broglie wavelength of the electrons. Incorrect: Your answer is incorrect. (b) Find the ratio of this wavelength to the wavelength of light at the middle of the visible spectrum (550 nm). (c) How many times greater magnification is theoretically possible with this microscope than with a light microscope?
Barium has a work function of 2.48 eV. What is the maximum kinetic energy of electrons...
Barium has a work function of 2.48 eV. What is the maximum kinetic energy of electrons if the metal is illuminated by UV light of wavelength 420 nm? eV What is their speed? m/s
a) An electron with 10.0 eV kinetic energy hits a 10.1 eV potential energy barrier. Calculate...
a) An electron with 10.0 eV kinetic energy hits a 10.1 eV potential energy barrier. Calculate the penetration depth. b) A 10.0 eV proton encountering a 10.1 eV potential energy barrier has a much smaller penetration depth than the value calculated in (a). Why? c) Give the classical penetration depth for a 10.0 eV particle hitting a 10.1 eV barrier.
1. Calculate the permeability of electrons with energy of 0.1 eV and 0.5 eV respectively when...
1. Calculate the permeability of electrons with energy of 0.1 eV and 0.5 eV respectively when penetrating a positional energy barrier of 1.0 eV in height and 100 pm in length by tunnel phenomenon. k Attachment image=[2m(V-E)]^1/2 T={1+(e^kL-e^-kL)^2/16ε(1-ε)}^-1 (ε= E/V) 2. Explain the meaning of tunneling covered in the above problem with the wave and explain the difference between classical and quantum mechanics based on it.
A proton with initial kinetic energy 50.0 eV encounters a barrier of height 70.0 eV. What...
A proton with initial kinetic energy 50.0 eV encounters a barrier of height 70.0 eV. What is the width of the barrier if the probability of tunneling is How does this compare with the barrier width for an electron with the same energy tunneling through a barrier of the same height with the same probability ?
The maximum kinetic energy of photoelectrons is 2.80 eV . When the wavelength of the light...
The maximum kinetic energy of photoelectrons is 2.80 eV . When the wavelength of the light is increased by 50%, the maximum energy decreases to 1.30 eV . What is the work function of the cathode? What is the initial wavelength?
What magnetic field is required to constrain an electron with a kinetic energy of 404 eV...
What magnetic field is required to constrain an electron with a kinetic energy of 404 eV to a circular path of radius 0.777 m?
Each of the electrons in the beam of a television tube has a kinetic energy of...
Each of the electrons in the beam of a television tube has a kinetic energy of 11.0 keV. The tube is oriented so that the electrons move horizontally from geomagnetic south to geomagnetic north. The vertical component of Earth's magnetic field points down and has a magnitude of 50.0 μT. 1.What is the acceleration of a single electron due to the magnetic field? 2.How far will the beam deflect in moving 20 cm through the television tube?
The electrons in the beam of a television tube have a kinetic energy of  2.37 × 10...
The electrons in the beam of a television tube have a kinetic energy of  2.37 × 10 -15 J.  Initially, the electrons move horizontally from west to east. The vertical component of the earth's magnetic field points down, toward the surface of the earth, and has a magnitude of  2.73 × 10 -5 T.  What is the acceleration of an electron due to this field component?
a.A free (i.e. unbound) electron has a kinetic energy of 7.5 eV. What is the angular...
a.A free (i.e. unbound) electron has a kinetic energy of 7.5 eV. What is the angular wavenumber of the travelling wave that describes the solution to Schr ̈odinger’s equation for this particle? b.A particle of mass 6.64 × 10-27 kg is confined in an infinite square well of width 2.50 × 10-11 m. It is observed to have an energy of 3.00 eV. How many nodes does its wavefunction have? (Not including those at the walls of the well.) c.What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT