Question

In: Electrical Engineering

An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor...

An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 40 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 21 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed from each lbm of water at 55°F to turn it into ice at 25°F).
The power input to the ice machine is ?
Answer should be gotten in hp(horsepower)

Solutions

Expert Solution


Related Solutions

For an ideal vapor-compression heat pump cycle, refrigerant 134a is used to provide 35 kW of...
For an ideal vapor-compression heat pump cycle, refrigerant 134a is used to provide 35 kW of heat to a building. Saturated vapor enters the compressor at 1.6 bar and saturated liquid exits the condenser which operates at 8 bar. What is (a) the mass flow rate of the refrigerant, and (b) the COP?
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 30°C while operating its condenser at 1000 kPa. Determine the COP of the system when a temperature difference of 2°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.) The COP of the system is ?
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 8 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with...
Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -20oC with a volumetric flow rate of 0.18 m3/s. Refrigerant exits at 9 bar, 70oC. Changes in kinetic and potential energy from inlet to exit can be ignored. Determine the volumetric flow rate at the exit, in m3/s, and the compressor power, in kW.
Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2.8...
Refrigerant-134a enters an adiabatic compressor as saturated vapor at 160 kPa at a rate of 2.8 m3/min and is compressed to a pressure of 900 kPa. Determine the minimum power that must be supplied to the compressor. Use the tables for R-134a. The minimum power that must be supplied to the compressor
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool...
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool a house. It provides 3 refrigeration tons ≈ 10.5kW of cooling (heat removal from the house air). The refrigerant in the evaporator operates at 400kPa while in the condenser it is at 1000kPa. Treat the surroundings as a thermal reservoir at 33◦C and the air in the house as a thermal reservoir at 19◦C. All reservoirs are at 100kPa. 1. What is the COPr...
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 °...
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 ° C temperature and exits at 1 MPa pressure. The volumetric flow of the refrigerant entering the compressor is 0.23 m3 / minute. The refrigerant enters the throttling valve at 0.95 MPa pressure and 30 ° C, exiting the evaporator as saturated steam at -18 ° C. The adiabatic efficiency of the compressor is 78%. Show the cycle in the T-s diagram. In addition, a)...
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor...
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor as saturated vapor at 6 C and enters a throttling valve as a saturated liquid at 1.2MPa. Assuming the mass flow rate of fluid is 1 kg/sec. 1. The heat received by the fluid (kJ) is 2. The heat received by the surroundings (kJ) is 3. The power input to the compressor (kJ) is 4. The coefficient of performance is
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the...
There is a vapor compression type refrigeration cycle using the refrigerant HFC 134 a. In the condenser, it is isostatically cooled, the condensation temperature is 50 ° C., and the condenser outlet is the compressed liquid at 45 ° C. In the evaporator, it is isothermally heated, the evaporation temperature is 10 ° C. and the outlet of the evaporator is heated steam at 15 ° C. When the expansion valve performs isenthalpic expansion, and the adiabatic efficiency of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT