Question

In: Mechanical Engineering

For an ideal vapor-compression heat pump cycle, refrigerant 134a is used to provide 35 kW of...

For an ideal vapor-compression heat pump cycle, refrigerant 134a is used to provide 35 kW of heat to a building. Saturated vapor enters the compressor at 1.6 bar and saturated liquid exits the condenser which operates at 8 bar. What is (a) the mass flow rate of the refrigerant, and (b) the COP?

Solutions

Expert Solution


Related Solutions

Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.1 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 75%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 180 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal-vapor compression cycle using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 40 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 21 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed from each lbm of water at 55°F to turn it into...
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool...
An ideal vapor compression refrigeration cycle using r134a as the refrigerant is being used to cool a house. It provides 3 refrigeration tons ≈ 10.5kW of cooling (heat removal from the house air). The refrigerant in the evaporator operates at 400kPa while in the condenser it is at 1000kPa. Treat the surroundings as a thermal reservoir at 33◦C and the air in the house as a thermal reservoir at 19◦C. All reservoirs are at 100kPa. 1. What is the COPr...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 30°C while operating its condenser at 1000 kPa. Determine the COP of the system when a temperature difference of 2°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.) The COP of the system is ?
The figure below gives data for an ideal vapor-compression heat pump cycle operating at steady state...
The figure below gives data for an ideal vapor-compression heat pump cycle operating at steady state with Refrigerant 134a as the working fluid. The heat pump provides heating at a rate of 15 kW to maintain the interior of a building at TH = 20°C when the outside temperature is TC = 0°C. State p (bar) h (kJ/kg) 1 2.4 244.1 2 10 273.6 3 10 105.3 4 2.4 105.3 Determine: (a) the temperatures at the principal states of the...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated...
A vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 2 bar, and saturated liquid exits the condenser at 10 bar. The isentropic compressor efficiency is 80%. The mass flow rate of refrigerant is 7 kg/min. Determine: (a) the compressor power, in kW. (b) the refrigeration capacity, in tons. (c) the coefficient of performance.
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enter
Consider   a   vapour   compression   refrigeration   cycle   that   uses   R-134a   as   refrigerant.   The   R-134a   enters   the   compressor   as   a   saturated   vapour   at   200   kPa,   and   exits   the   condenser   as   a   saturated   liquid   at   900   kPa.   The   rate   of   refrigeration   of   the   cycle   is   to   be   6.0   tons   of   refrigeration   (1   ton   of   refrigeration   =   3.517   kW).   The   compressor   isentropic   efficiency   is   80%.   Determine:   a) The   temperature   of   evaporation   and   condensation   of   the   refrigerant;   b) Mass   flow   of   the   refrigerant   R-134a,   in  ...
Refrigerant-134a enters the condenser of a residential heat pump at 900 kPa and 65oC at a...
Refrigerant-134a enters the condenser of a residential heat pump at 900 kPa and 65oC at a rate of 0.018 kg/s and leaves at 750 kPa subcooled by 2oC. The refrigerant enters the compressor at 200 kPa superheated by 3oC. Determine (a) the isentropic efficiency of the compressor in decimal (up to two decimals), (b) the rate of heat supplied to the heated room, and (c) the COP of the heat pump. Also determine (d) the COP if this heat pump...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant...
A vapor-compression refrigeration cycle working with R22 contains a liquid-to-suction heat exchanger. The saturated liquid refrigerant at 40 °C leaving the condenser and entering the heat exchanger is used to superheat the saturated vapor refrigerant leaving the evaporator at 7 °C by 8 °C. If the compressor is capable of pumping 5 l/s of vapor refrigerant measured at the inlet to the compressor and the compression processes are considered isentropic in both cases listed below, determine; (a) The refrigerating capacity...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT