Question

In: Chemistry

Consider a diporitc acid, H2A, where Ka1 = 8.41E-4 and Ka2 = 2.36E-9. Answer the following...

Consider a diporitc acid, H2A, where Ka1 = 8.41E-4 and Ka2 = 2.36E-9. Answer the following questions regarding this solution:


If the initial concentration of the acid is 0.66M, what is the pH of the solution?

What will the concentration of A2- be at equilibrium?

Solutions

Expert Solution


Related Solutions

A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 = 2.70× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. .185M solution of NaHA .185M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 = 4.71× 10–11. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.184 M solution of H2A (b) a 0.184 M solution of NaHA (c) a 0.184 M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 = 4.99× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.121 M solution of H2A pH = ? [H2A]=? [HA-]=? [A2-]=? (b) a 0.121 M solution of NaHA pH = ? [H2A]=? [HA-]=? [A2-]=? (c) a 0.121 M solution of Na2A pH = ? [H2A]=? [HA-]=? [A2-]=?
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 = 2.17× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.147 M solution of H2A (b) a 0.147 M solution of NaHA
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 = 4.02× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.124 M solution of H2A pH [H2A] [HA-] [A2-] (b) a 0.124 M solution of NaHA pH [H2A] [HA-] [A2-] (c) a 0.124 M solution of Na2A pH [H2A] [HA-] [A2-]
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 = 2.28× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.203 M solution of H2A (b) a 0.203 M solution of NaHA (c) a 0.203 M solution of Na2A
Given a diprotic acid, H2A, with two ionization constants of Ka1 = 4.08× 10–4 and Ka2...
Given a diprotic acid, H2A, with two ionization constants of Ka1 = 4.08× 10–4 and Ka2 = 2.89× 10–12, calculate the pH and molar concentrations of H2A, HA–, and A2– for each of the solutions below. (a) a 0.167 M solution of H2A (b) a 0.167 M solution of NaHA (c) a 0.167 M solution of Na2A
for the diuretic weak acid H2A Ka1=2.2x10^-6 and Ka2=8.6x10^-9. what is the pH of a .0500M...
for the diuretic weak acid H2A Ka1=2.2x10^-6 and Ka2=8.6x10^-9. what is the pH of a .0500M solution of H2A? what are the equilibrium concentrations of H2A and A^2- in this solution?
For the diprotic weak acid H2A, Ka1 = 3.2 × 10^-6 and Ka2 = 8.0 ×...
For the diprotic weak acid H2A, Ka1 = 3.2 × 10^-6 and Ka2 = 8.0 × 10^-9. What is the pH of a 0.0600 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? Please show work.
For the diprotic weak acid H2A, Ka1 = 2.5 × 10-6 and Ka2 = 5.5 ×...
For the diprotic weak acid H2A, Ka1 = 2.5 × 10-6 and Ka2 = 5.5 × 10-9. What is the pH of a 0.0800 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT