Question

In: Advanced Math

Let L be a linear map between linear spaces U and V, such that L: U...

Let L be a linear map between linear spaces U and V, such that L: U -> V and let l_{ij} be the matrix associated with L w.r.t bases {u_i} and {v_i}. Show l_{ij} changes w.r.t a change of bases (i.e u_i -> u'_i and v_j -> v'_j)

Solutions

Expert Solution


Related Solutions

Let U and V be vector spaces, and let L(V,U) be the set of all linear...
Let U and V be vector spaces, and let L(V,U) be the set of all linear transformations from V to U. Let T_1 and T_2 be in L(V,U),v be in V, and x a real number. Define vector addition in L(V,U) by (T_1+T_2)(v)=T_1(v)+T_2(v) , and define scalar multiplication of linear maps as (xT)(v)=xT(v). Show that under these operations, L(V,U) is a vector space.
1. For a map f : V ?? W between vector spaces V and W to...
1. For a map f : V ?? W between vector spaces V and W to be a linear map it must preserve the structure of V . What must one verify to verify whether or not a map is linear? 2. For a map f : V ?? W between vector spaces to be an isomorphism it must be a linear map and also have two further properties. What are those two properties? As well as giving the names...
Problem 3. An isometry between inner-product spaces V and W is a linear operator L in...
Problem 3. An isometry between inner-product spaces V and W is a linear operator L in B (V ,W) that preserves norms and inner-products. If x, y in V and if L is an isometry, then we have <L(x),L(y)>_W = <x, y>_V . Suppose that V and W are both real, n-dimensional inner-product spaces. Thus the scalar field for both is R and both of them have a basis consisting of n elements. Show that V and W are isometric...
Prove that if U, V and W are vector spaces such that U and V are...
Prove that if U, V and W are vector spaces such that U and V are isomorphic and V and W are isomorphic, then U and W are isomorphic.
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional....
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional. Let X be a 3 × 5 matrix and Y be a 5 × 2 matrix. What are the largest and smallest possible ranks of X, Y, and XY? Give examples of the matrix to support your answers
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give...
V and W are finite dimensional inner product spaces,T: V→W is a linear map 1A: Give an example of a map T from R2 to itself (with the usual inner product) such that〈Tv,v〉= 0 for every map. 1B: Suppose that V is a complex space. Show that〈Tu,w〉=(1/4)(〈T(u+w),u+w〉−〈T(u−w),u−w〉)+(1/4)i(〈T(u+iw),u+iw〉−〈T(u−iw),u−iw〉 1C: Suppose T is a linear operator on a complex space such that〈Tv,v〉= 0 for all v. Show that T= 0 (i.e. that Tv=0 for all v).
Let X ∈ L(U, V ) and Y ∈ L(V, W). You may assume that V...
Let X ∈ L(U, V ) and Y ∈ L(V, W). You may assume that V is finite-dimensional. 1)Prove that dim(range Y) ≤ min(dim V, dim W). Explain the corresponding result for matrices in terms of rank 2) If dim(range Y) = dim V, what can you conclude of Y? Give some explanation 3) If dim(range Y) = dim W, what can you conclude of Y? Give some explanation
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint....
V and W are finite dimensional inner product spaces,T:V→W is a linear map, and∗represents the adjoint. 1A: Let n be a positive integer, and suppose that T is defined on C^n (with the usual inner product) by T(z1,z2,...,zn) = (0,z1,z2,...,zn−1). Give a formula for T*. 1B: Show that λ is an eigenvalue of T if and only if λ is an eigenvalue of T*.
Let f : V mapped to W be a continuous function between two topological spaces V...
Let f : V mapped to W be a continuous function between two topological spaces V and W, so that (by definition) the preimage under f of every open set in W is open in V : Y is open in W implies f^−1(Y ) = {x in V | f(x) in Y } is open in V. Prove that the preimage under f of every closed set in W is closed in V . Feel free to take V...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a...
Questionnnnnnn a. Let V and W be vector spaces and T : V → W a linear transformation. If {T(v1), . . . T(vn)} is linearly independent in W, show that {v1, . . . vn} is linearly independent in V . b. Define similar matrices c Let A1, A2 and A3 be n × n matrices. Show that if A1 is similar to A2 and A2 is similar to A3, then A1 is similar to A3. d. Show that...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT