Question

In: Advanced Math

Let X ∈ L(U, V ) and Y ∈ L(V, W). You may assume that V...

Let X ∈ L(U, V ) and Y ∈ L(V, W). You may assume that V is finite-dimensional.

1)Prove that dim(range Y) ≤ min(dim V, dim W). Explain the corresponding result for matrices in terms of rank

2) If dim(range Y) = dim V, what can you conclude of Y? Give some explanation

3) If dim(range Y) = dim W, what can you conclude of Y? Give some explanation

Solutions

Expert Solution


Related Solutions

Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional....
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional. Let X be a 3 × 5 matrix and Y be a 5 × 2 matrix. What are the largest and smallest possible ranks of X, Y, and XY? Give examples of the matrix to support your answers
1. Let U = {r, s, t, u, v, w, x, y, z}, D = {s,...
1. Let U = {r, s, t, u, v, w, x, y, z}, D = {s, t, u, v, w}, E = {v, w, x}, and F = {t, u}. Use roster notation to list the elements of D ∩ E. a. {v, w} b. {r, s, t, u, v, w, x, y, z} c. {s, t, u} d. {s, t, u, v, w, x, y, z} 2. Let U = {r, s, t, u, v, w, x, y, z},...
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
If V = U ⊕ U⟂ and V = W ⊕ W⟂, and if S1: U...
If V = U ⊕ U⟂ and V = W ⊕ W⟂, and if S1: U → W and S2: U⟂ → W⟂ are isometries, then the linear operator defined for u1 ∈ U and u2 ∈ U⟂ by the formula S(u1 + u2) = S1u1 + S2u2 is a well-defined linear isometry. Prove this.
Let W denote the set of English words. For u, v ∈ W, declare u ∼...
Let W denote the set of English words. For u, v ∈ W, declare u ∼ v provided that u, v have the same length and u, v have the same first letter and u, v have the same last letter. a) Prove that ∼ is an equivalence relation. b) List all elements of the equivalence class [a] c) List all elements of [ox] d) List all elements of [are] e) List all elements of [five]. Can you find more...
Let U and V be vector spaces, and let L(V,U) be the set of all linear...
Let U and V be vector spaces, and let L(V,U) be the set of all linear transformations from V to U. Let T_1 and T_2 be in L(V,U),v be in V, and x a real number. Define vector addition in L(V,U) by (T_1+T_2)(v)=T_1(v)+T_2(v) , and define scalar multiplication of linear maps as (xT)(v)=xT(v). Show that under these operations, L(V,U) is a vector space.
Let X ∼ Poisson(λ) and Y ∼ U[X, 2X]. Find E(Y ) and V ar(Y ).
Let X ∼ Poisson(λ) and Y ∼ U[X, 2X]. Find E(Y ) and V ar(Y ).
Find five positive natural numbers u, v, w, x, y such that there is no subset...
Find five positive natural numbers u, v, w, x, y such that there is no subset with a sum divisible by 5
define U=x+y, V=x-y. find the joint and marginal pdf of U and V
define U=x+y, V=x-y. find the joint and marginal pdf of U and V
Let L be a linear map between linear spaces U and V, such that L: U...
Let L be a linear map between linear spaces U and V, such that L: U -> V and let l_{ij} be the matrix associated with L w.r.t bases {u_i} and {v_i}. Show l_{ij} changes w.r.t a change of bases (i.e u_i -> u'_i and v_j -> v'_j)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT