Question

In: Mechanical Engineering

Air at 20°C and 1 atm flows over a spherical object at 1 m/s. The sphere...

Air at 20°C and 1 atm flows over a spherical object at 1 m/s. The sphere has a diameter of 10mm and its initial temperature is 134°C. If the density, specific heat, and conductivity of the sphere are 7832 kg/m”, 549 J/kg.K, and 49.2 W/m.K, respectively, calculate the temperature at the center of the sphere after 100 seconds.

Solutions

Expert Solution


Related Solutions

Air at 20°C (1 atm) is flowing over a 0.025-m diameter sphere with a velocity of...
Air at 20°C (1 atm) is flowing over a 0.025-m diameter sphere with a velocity of 3.5 m/s. If the surface temperature of the sphere is constant at 80°C, determine the Reynolds number corresponding to the sphere, its average drag co-efficient, and the heat transfer rate from the sphere. The properties of air (1 atm) at the free stream temperature T∞ = 20°C, ρ = 1.204 kg/m3, k = 0.02514 W/m∙K, μ = 1.825 × 10−5 kg/m∙s, and Pr = 0.7309. At the surface temperature Ts= 80°C: μs =...
Air at 25°C flows over a 10-mm-diameter sphere with a velocity of 20 m/s, while the...
Air at 25°C flows over a 10-mm-diameter sphere with a velocity of 20 m/s, while the surface of the sphere is maintained at 75°C. What is the rate of heat transfer from the sphere? q = ___ W ? Please provide correct final answer for guaranteed thumbs up rating !
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a...
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a 4-m wide single surface of a square plate whose temperature is 80°C. (For properties of air, use k = 0.02735 W/m·K, Pr = 0.7228, ν = 1.798 x 10-5 m2 /s ) Given the above information, do the calculations to answer the two MC questions below. Please clearly show/discuss your solution method and calculations. A. __________The rate of heat transfer, Q̇ , from this...
A thin plate is suspended in air at 1 atm. with T_infinite= 15°C. Air flows on...
A thin plate is suspended in air at 1 atm. with T_infinite= 15°C. Air flows on both sides of the plate where the bottom side absorbs a uniform radiative heat flux of 1542 W/m2. The plate is oriented parallel to the flow and the length along the flow direction is 60 cm. Consider the plate is negligibly thin and the width of the plate (perpendicular to the flow) is large, so that the problem can be considered as a 2D...
Air at 10°C and I atm flows over a flat plate (30 cm x100 cm) at...
Air at 10°C and I atm flows over a flat plate (30 cm x100 cm) at 20 m/s. The plate is maintained at 70°C. (a) calculate the boundary layer thikness at distances of 30 cm and 100 cm, (b) calculate the heat transfer from first 30 cm and from whole the plate.
1.7 kg/s NH3 and 20 m3/s air at 25 oC and 1 atm are fed into...
1.7 kg/s NH3 and 20 m3/s air at 25 oC and 1 atm are fed into a reactor in which the ammonia is completely consumed. The product gas emerges at 300 oC. Calculate the rate at which heat must be transferred to or from the reactor, assuming operation at approximately 1 atm. You must show full systematic working. The standard heat of reaction for the oxidation of ammonia is given below: 4 NH3(g) + 5 O2(g) ? 4 NO(g) +...
Air at 1 atm and 27 degree C flows across a flat plate at a velocity...
Air at 1 atm and 27 degree C flows across a flat plate at a velocity of 14 m/s. Find the distance from the leading edge where transition to turbulent flow begins and the local heat-transfer coefficient at this point if the temperature of the plate is 77 degree C.
3) Air enters a compressor at 2 m / s, 20 ° C and 100 kPa...
3) Air enters a compressor at 2 m / s, 20 ° C and 100 kPa pressure, exits at 50 m / s, 900 kPa pressure and 200 ° C. Make sure that the power consumed by the compressor is 500 kW. The outlet cross-section diameter of the compressor is 10 cm. (Neglect the change in potential energy.) (15 points) CALCULATE THE AMOUNT OF HEAT?
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using...
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using a spreadsheet, calculate the boundary layer thickness and wall shear stress at 0.1 meter intervals along the plate. Do not plot the wall shear stress at x=0. Use a transition Reynolds number of 5 x 10^5 . (You will need to calculate Rex at each location to determine if the laminar or turbulent correlations should be used.) Generate a spreadsheet table that includes columns...
Air at 25°C is flowing over 400°C hot iron ball with a velocity of 10 m/s....
Air at 25°C is flowing over 400°C hot iron ball with a velocity of 10 m/s. The diameter of the iron ball is 10 cm diameter and (p =7874 kg/m3 and cP = 450 J/kg.K). After a while the surface temperature of the ball drops to 300°C. Determine the average rate of heat transfer from the ball. How long will it take to drop from 400°C to 300°C. Calculate the drag force. (The surface of the ball is smooth.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT