In: Accounting
2 a) A production manager concerned about the relationship of machine hours and indirect labour cost. Estimate the following data to help manager the unit properly in future. The results are as shown below.
Week |
Machine Hour |
Indirect Labour (cost) |
1 |
68 |
1190 |
2 |
88 |
1211 |
3 |
62 |
1004 |
4 |
72 |
917 |
5 |
60 |
770 |
6 |
96 |
1456 |
7 |
78 |
1180 |
8 |
46 |
710 |
9 |
82 |
1316 |
10 |
94 |
1032 |
11 |
68 |
752 |
12 |
48 |
963 |
Required: Using least square method;
Machine Hours | R & M Cost | ||
X | Y | XY | X^2 = X * X |
68 | 1190 | 80920 | 4,624 |
88 | 1211 | 106568 | 7,744 |
62 | 1004 | 62248 | 3,844 |
72 | 917 | 66024 | 5,184 |
60 | 770 | 46200 | 3,600 |
96 | 1456 | 139776 | 9,216 |
78 | 1180 | 92040 | 6,084 |
46 | 710 | 32660 | 2,116 |
82 | 1316 | 107912 | 6,724 |
94 | 1032 | 97008 | 8,836 |
68 | 752 | 51136 | 4,624 |
48 | 963 | 46224 | 2,304 |
862 | 12,501 | 9,28,716 | 64,900 |
X bar = Total Machine Hours/ Total months | |||
X bar =862/ 12 | 71.83333333 | ||
y bar = Total R & M Cost / Total Months | |||
Y bar = $12501/12 | 1041.75 | ||
Cost Equation = a + b x Machine hours | |||
b = (NΣxy − Σx Σy)/N(Σx^2) − (Σx^2 | |||
b = (12 x 928716 − 862 x 12501 )/(12 x 64900)- 862^2) | $ 10.31 | ||
a = y bar - b x Xbar | |||
a = 1041.75 - (10.31 x 71.83) | $ 300.98 | ||
Cost Equation = 300.98 + 10.31 x MH | |||
Labour Cost = 300.98 + 10.31x 35units | $ 661.91 | ||
Labour Cost = 300.98 + 10.31x 90 units | $ 1,537.58 | ||