Use ‘Reduction of Order’ to find a second solution y2 to the
given ODEs:
(a) y′′+2y′+y=0, y1 =xe−x
(b) y′′+9y=0, y1 =sin3x
(c) x2y′′+2xy′−6y=0, y1 =x2
(d) xy′′ +y′ =0, y1 =lnx
find the general solution of the given differential equation
1. 2y''+3y'+y=t^2 +3sint
find the solution of the given initial value problem
1. y''−2y'−3y=3te^2t, y(0) =1, y'(0) =0
2. y''−2y'+y=te^t +4, y(0) =1, y'(0) =1