Find a particular solution to the following non homogenous
equations
1) y''' + y = t^3 + sin (t) + 11e^t
2) y'' + y = 2tsin(t)
3) y''''' - 4 y''' = e^2t + t^2 +5t + 4
1) find the solution t the non-homogenous DE
y''-16y=3e5x , y(0)=1 , y'(0)=2
2)find the solution to the DE using cauchy-euler method
x2y''+7xy'+9y=0 , y(1)=2 , y'(1)=3
3)find the solution to the DE using Laplace
y''+8y'+16y=0 , y(0)=-1 , y'(0)=8
given the 3rd order differential equation: y''' - 3y'' + 2y' =
ex / (1 + e-x)
i) set u = y' to reduce the order of the equation to order 2
ii) solve the reduced equation using variation of parameters
iii) find the solution of the original differential equation
Given that a particular solution of 2y′′ +3y′ +y = x^2 +7x+8 is
yp1=x^2+x+1 and that a particular solution of 2y′′ + 3y′ + y =
2sinx+4cosx is yp2=sinx-cosx, find a particular solution for 2y"
+3y' +y =3x^2 + 21x + 24 -sinx -2cosx