Question

In: Finance

Five samples of size 4 were taken from a process. A range chart was developed that...

Five samples of size 4 were taken from a process. A range chart was developed that had LCLr = 0 and UCLr = 2.50. Similarly, an average chart was developed with the average range from the five samples, with LCLx = 15.0 and UCLX = 24.0. The ranges for each of the five samples were 1.75, 2.42, 2.75, 2.04, and 2.80, respectively. The values of the sample average for each sample were 19.5, 22.3, 17.4, 20.1, and 18.9, respectively. What can you tell management from this analysis?

The process variability and the process average are out of control.

We cannot tell if the process variability or the process average is out of control.

The process variability is out of control, but the process average is in control.

The process variability is out of control, and we cannot make a statement about the process average.

Solutions

Expert Solution

The question is based on the concept of production control chart , The control chart explains the graphical movement of production level over time. The production data are plotted as line graph in time order, with a central line for the average, an upper control line and lower control line used to find consistency in production system.

Here , the given ULC and LCL for sample and aaverage explain the variablity is out of control.

Correct Answer D:The process variability is out of control, and we cannot make a statement about the process average.


Related Solutions

Five samples of size 4 were taken from a process. Summary statistics are shown below: Sample...
Five samples of size 4 were taken from a process. Summary statistics are shown below: Sample Range Mean 1 1.75 10.5 2 2.42 22.3 3 2.75 17.4 4 2.04 20.1 5 2.80 18.9 What is the lower control limit for a range chart?
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart...
Ten samples of 15 parts each were taken from an ongoing process to establish a p-chart for control. The samples and the number of defectives in each are shown in the following table: SAMPLE n NUMBER OF DEFECTIVE ITEMS IN THE SAMPLE 1 15 0 2 15 2 3 15 0 4 15 3 5 15 1 6 15 3 7 15 1 8 15 0 9 15 0 10 15 0 Determine the p−p− , Sp, UCL and LCL...
Twelve samples, each containing five parts, were taken from a process that produces steel rods. The...
Twelve samples, each containing five parts, were taken from a process that produces steel rods. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. The results were: Sample Sample Mean (in.) Range (in.) 1 10.002 0.011 2 10.002 0.014 3 9.991 0.007 4 10.006 0.022 5 9.997 0.013 6 9.999 0.012 7 10.001 0.008 8 10.005 0.013 9 9.995 0.004 10 10.001 0.011 11 10.001 0.014 12 10.006...
Nine samples were taken from 2 streams, four from one and five from the other and...
Nine samples were taken from 2 streams, four from one and five from the other and the following data were obtained. Pollution lever in stream 1: ppm Pollution level in stream 2: ppm 16 9 12 10 14 8 11 6 Someone claimed that the data proved that stream 2 is less polluted than stream 1. Someone else asked the following questions: When were the data collected? Were the data collected all in one day or on different days? Were...
1. Five samples of table legs produced in an automated cutting process were taken each hour...
1. Five samples of table legs produced in an automated cutting process were taken each hour for 20 hours. The length of a table leg in centimeters was measured, and yielded averages and ranges show in the below table. Assume the sample size (n) is 5. Sample Avg Length () Range (R) 1 95.72 1.0 2 95.24 0.9 3 95.18 0.8 4 95.44 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10...
Question 1. Samples of n = 4 items are taken from a process at regular intervals....
Question 1. Samples of n = 4 items are taken from a process at regular intervals. A normally distributed quality characteristic is measured and x-bar and s values are calculated at each sample. After 50 subgroups have been analyzed, we have ? x?i = 1,000 and ? si = 72 (A) Compute the control limit for the x and s control charts (B)Assume that all points on both charts plot within the control limits. What are the natural tolerance limits...
Ten samples of 15 parts each were taken from an ongoing process to establish a p...
Ten samples of 15 parts each were taken from an ongoing process to establish a p chart for control. The samples and the number of defectives in each are shown in the following table: Sample n Number of defects in Sample Sample n Number of defects in Sample 1 15 3 6 15 2 2 15 1 7 15 0 3 15 0 8 15 4 4 15 2 9 15 1 5 15 0 10 15 0 Develop a...
It is desired to develop a means chart and a range chart for a process that...
It is desired to develop a means chart and a range chart for a process that puts a cola drink into bottles.  The nominal goal is to put 16 oz. into each bottle.  The data were obtained from 25 of size 4 A. Construct means and range charge obtained information and 3-sigma limits. B. Then graph the data on the chart.  Identify any samples that indicate the process is out of control. Pop into Bottles Problem Sample number Item 1 Item 2 Item...
samples of n=4 items each are taken from a manufacturing process at regular intervals. a quality...
samples of n=4 items each are taken from a manufacturing process at regular intervals. a quality characteristic is measured, and x-bar and r values are calculated for each sample. after 25 samples, we have: x-bar = 107.5 r = 12.5 assume that the quality characteristic is normally distributed. a)compute control limits for the x-bar and r control charts b)estimate the process mean and standard deviation c)assuming that the process is in control, what are the natural tolerance limits of the...
One hundred blood samples were taken from 100 individuals. All of the blood samples were run...
One hundred blood samples were taken from 100 individuals. All of the blood samples were run through two machines to determine if the machines were testing samples appropriately. We expect that both machines should yield similar results. Below are the results of the analysis. Assume there are 100 sample and they are normal. Are the two machines similar? Should we check into whether one machine should be replaced? Show all of your work. Beckman Machine Coulter Machine 3. 4. 5....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT