Question

In: Advanced Math

Given a natural number q ≥ 1, define a relation ∼ on the set Z by...

Given a natural number q ≥ 1, define a relation ∼ on the set Z by x ∼ y
if x - y is divisible by q.
(i) Show that ∼ is an equivalence relation.
We will denote the set of equivalence classes defined by ∼ with Z=qZ. Also
let x mod q denote the equivalence class to which an integer x belongs.
(ii) Check that the operations

(x
(x
mod q) + (y
mod q) · (y
mod q) = (x + y)
mod q) = (x · y)
mod q;
mod q;

are well-defined on Z=qZ.
(iii) With the operations as defined above, show that Z=qZ is not a field
if q is not prime.

Solutions

Expert Solution


Related Solutions

Suppose we define a relation on the set of natural numbers as follows. Two numbers are...
Suppose we define a relation on the set of natural numbers as follows. Two numbers are related iff they leave the same remainder when divided by 5. Is it an equivalence relation? If yes, prove it and write the equivalence classes. If no, give formal justification.
Show that |N| = |Z|, where N is the set of natural numbers and Z is...
Show that |N| = |Z|, where N is the set of natural numbers and Z is the set of all integers.
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
1)Let S be the set of all students at a college. Define a relation on the...
1)Let S be the set of all students at a college. Define a relation on the set S by the rule that two people are related if they live less than 2 miles apart. Is this relation an equivalence relation on S? Justify your answer. 2) Define another relation on the set S from problem 5 by defining two people as related if they have the same classification (freshman, sophomore, junior, senior or graduate student). Is this an equivalence relation...
The equivalence relation on Z given by (?, ?) ∈ ? iff ? ≡ ? mod...
The equivalence relation on Z given by (?, ?) ∈ ? iff ? ≡ ? mod ? is an equivalence relation for an integer ? ≥ 2. a) What are the equivalence classes for R given a fixed integer ? ≥ 2? b) We denote the set of equivalence classes you found in (a) by Z_5. Even though elements of Z_5 are sets, it turns out that we can define addition and multiplication in the expected ways: [?] + [?]...
Define a relation ~ on Z x Z such that (a,b) ~ (c,d) precisely when a...
Define a relation ~ on Z x Z such that (a,b) ~ (c,d) precisely when a + b = c + d. Let R = {[(a,b)] : (a,b) in Z x Z} (i.e. R is the set of all equivalence classes of Z x Z under the equivalence relation ~). For each of the following operations, determine whether or not the operation is well defined. Prove your answer. [(x,y)] * [(w, z)] = [(x + w, y + z)] [(x,y)]...
Consider the relation R defined on the set Z as follows: ∀m, n ∈ Z, (m,...
Consider the relation R defined on the set Z as follows: ∀m, n ∈ Z, (m, n) ∈ R if and only if m + n = 2k for some integer k. For example, (3, 11) is in R because 3 + 11 = 14 = 2(7). (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
For the following exercises, find the number of subsets in each given set. {a, b, c, … , z}
For the following exercises, find the number of subsets in each given set.{a, b, c, … , z}
Define the following order on the set Z × Z: (a, b) < (c, d) if...
Define the following order on the set Z × Z: (a, b) < (c, d) if either a < c or a = c and b < d. This is referred to as the dictionary order on Z × Z. (a) Show that there are infinitely many elements (x, y) in Z × Z satisfying the inequalities (0, 0) < (x, y) < (1, 1). (b) Show that Axioms O1–O3 ( Trichotomy, Transitivity, Addition for inequalities) are satisfied for this...
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A...
Let A = {a+b*sqrt14: a,b∈Z}. Prove that A ∩ Q = Z. Explain is set A countable?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT