In: Physics
(a)
Deter emine the im age position from the first lense, \(\frac{1}{q_{1}}=\frac{1}{f}-\frac{1}{p_{1}}\)
\(=\frac{1}{9 \mathrm{~cm}}-\frac{1}{36 \mathrm{~cm}}\)
\(=0.0833 \mathrm{~cm}^{-1}\)
\(q_{1}=12 \mathrm{~cm}\)
Im age at this location acts as object for the second lens.
The distance of this im age from the second lens is,
\(p_{2}=d-q_{1}\)
\(=15-12\)
\(=3 \mathrm{~cm}\)
Final image position is,
\(\frac{1}{q_{2}}=\frac{1}{f}-\frac{1}{p_{2}}\)
\(=\frac{1}{9 \mathrm{~cm}}-\frac{1}{3 \mathrm{~cm}}\)
\(q_{2}=-4.5 \mathrm{~cm}\)
Therefore, final im age position from the objects,
\(s=p_{1}+d+q_{2}=36 \mathrm{~cm}+15 \mathrm{~cm}-4.5 \mathrm{~cm}\)
\(=46.5 \mathrm{~cm}\)
(b)
Total magnification is, \(m=\left(\frac{-q_{1}}{p_{1}}\right)\left(-\frac{q_{2}}{p_{2}}\right)=\left(\frac{-12}{36}\right)\left(\frac{-(-4.5)}{3}\right)=-0.5\)
Height of the image is,
\(h_{1}=h_{0}(m)\)
\(=2 \mathrm{~cm}(-0.5)\)
\(=-1.0 \mathrm{~cm}\)
Therefore, the height of the image is \(1.0 \mathrm{~cm}\)
(c)
A negative sign of magnification indicates that the final image is inverted.