Question

In: Physics

The figure below shows two converging lenses placed L1 = 23 cm apart. Their focal lengths...

The figure below shows two converging lenses placed L1 = 23 cm apart. Their focal lengths are f1 = 10 cm and f2 = 25 cm.

(a)

Where is the final image located for an object that is L2 = 32 cm in front of the first lens? (Measure this distance (in cm) relative to the lens of focal length f2.)distance cmdirection ---Select--- to the left of the lens to the right of the lens

(b)

What is the total magnification of the lens system? Note: Do not calculate a total angular magnification in this case since we are not dealing with a microscope.

Solutions

Expert Solution

given :

f1 = +10 cm

f2 = +25cm

separation between the lenses = 23 cm

u1 = object distance for lens 1 = -32cm

v1 = image distance for lens 1 = ?

u2 = object distance for lens 2 = ?

v2 = image distance for lens 2 = ?

a) Using lens equation for lens 1 :

[ v = image distance, u = object distance, f = focal length]

=> v1 = 160/11 cm

u1 = object distance for lens 2 = (23 - 160/11) = -93/11 cm

now, using lens equation for lens 2 :

=> v2 = -2325/182 =-12.77 cm.

Therefore, the final image is formed at a distance 12.77cm from the second lens and to the left of 2nd lens. [answer]

b) Total magnification = M = magnification by lens 1 * magnification by lens 2

  [answer]


Related Solutions

Two converging lenses with focal lengths of 40 cm and 20 cm are 10 cm apart....
Two converging lenses with focal lengths of 40 cm and 20 cm are 10 cm apart. A 3.0 cm -tall object is 15 cm in front of the 40 cm -focal-length lens. Calculate the image height.
Two converging lenses with focal lengths of 40 cmand 20 cm are 10 cm apart. A...
Two converging lenses with focal lengths of 40 cmand 20 cm are 10 cm apart. A 2.0 cm -tall object is 15 cm in front of the 40 cm -focal-length lens. Calculate the image position and image height. Please show work, thanks-
Two converging lenses, each of focal length 15 cm, are placed 52 cm apart, and an...
Two converging lenses, each of focal length 15 cm, are placed 52 cm apart, and an object is placed 30 cm in front of the first lens (a) Where is the final image formed with respect to the second lense? 60.8 cm behind the second lense 60.8 cm in front of the second lense 47.1 cm in front of the second lense 47.1 cm behind the second lense (b) What is the magnification of the system? 0.5 –1 –3.1 2.1
Two converging lenses, each of focal length 14.9 cm, are placed 39.5 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.5 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed? The image is located  cm  ---Location--- in front of the first lens. in front of the second lens. behind the second lens. What is the magnification of the system? M =  ✕
Two converging lenses, each of focal length 14.9 cm, are placed 39.8 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.8 cm apart, and an object is placed 29.1 cm in front of the first. How far from the first lens is the final image formed? Answer in units of cm. What is the magnification of the system?
Two converging lenses, each of focal length 14.9 cm, are placed 39.3 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.3 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed? The image is located cm  ---Location--- behind the second lens. in front of the first lens. in front of the second lens. What is the magnification of the system? M =  ?
Two 22.0 −cm−cm -focal-length converging lenses are placed 14.0 cmcm apart. An object is placed 32.0...
Two 22.0 −cm−cm -focal-length converging lenses are placed 14.0 cmcm apart. An object is placed 32.0 cm in front of one lens. Where will the final image formed by the second lens be located? di2 =    cm beyond the second lens What is the total magnification? m =    ×
Two converging lenses, with focal lengths f1 = 8 cm and f2 = 15 cm are...
Two converging lenses, with focal lengths f1 = 8 cm and f2 = 15 cm are separated by 30 cm. The lens on the left has a shorter focal length. An object, 1.5 cm tall, is placed 12 cm to the left of the combination. (i) Determine the position of the final image relative to the lens on the right. (ii) Determine the overall magnification and the height of the final image. (iii) Is the final image real or virtual?...
Two converging lenses having focal lengths of f1 = 12.5 cm and f2 = 19.5 cm...
Two converging lenses having focal lengths of f1 = 12.5 cm and f2 = 19.5 cm are placed a distance d = 48.5 cm apart as shown in the figure below. The image due to light passing through both lenses is to be located between the lenses at the position x = 32.5 cm indicated. Four objects are arranged along a horizontal line. From left to right, they are: An arrow, labeled "Object", begins on the line and points upward;...
Two thin converging lenses of focal lengths f1 = 11.0cm and f2 = 20.0cm are separated...
Two thin converging lenses of focal lengths f1 = 11.0cm and f2 = 20.0cm are separated by 25.0cm. An object is placed 33.0cm to the left of lens 1. Find the position and magnification of the final image.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT