Question

In: Physics

Bulbs A, B, and C in the figure(Figure 1) are identical and the switch is an...

uploaded image

Bulbs A, B, and C in the figure(Figure 1) are identical and the switch is an ideal conductor. How does closing the switch in the figure affect the potential difference?

Check all that apply.

Hints

Check all that apply.

The potential difference across A is unchanged.
The potential difference across B drops to zero.
The potential difference across A increases by 50%.
The potential difference across B drops by 50%.

Solutions

Expert Solution


Related Solutions

Bulbs A, B, and C in the figure(Part A figure)are identical and the switch is an ideal conductor.
  Bulbs A, B, and C in the figure(Part A figure)are identical and the switch is an ideal conductor. How does closing the switch in the figure affect the potential difference? Check all that apply.   The potential difference across A is unchanged.   The potential difference across B drops to zero.   The potential difference across A increases by 50%.   The potential difference across B drops by 50%.   One more bulb is added to the circuit and...
The three bulbs in (Figure 1) are identical. Part A Rank the bulbs from brightest to...
The three bulbs in (Figure 1) are identical. Part A Rank the bulbs from brightest to dimmest. Rank the bulbs from brightest to dimmest. To rank items as equivalent, overlap them. Part B Suppose a wire is connected between points 1 and 2. What happens to bulb A? Part C What happens to bulb B? Part D What happens to bulb C?
The switch in the figure (Figure 1) has been in position a for a long time. It is changed to position b at t=0s.
Part A What is the charge Q on the capacitor immediately after the switch is moved to position b? Express your answer using two significant figures.         Q =     ?C     Part B What is the current I through the resistor immediately after the switch is moved to position b? Express your answer using two significant figures.         I =     mA     Part C What is the charge Q on the capacitor at t=50?s? Express your answer using two significant figures....
1) What is the battery current Ibat when the switch in the figure(Figure 1) is open?...
1) What is the battery current Ibat when the switch in the figure(Figure 1) is open? 2)What is the potential difference Vab between points a and b when the switch is open? 3)What is the battery current Ibat when the switch is closed? 4) What is the potential difference Vab between points a and b when the switch is closed?
For an ideal battery (r=0Ω), closing the switch in the figure(Figure 1) does not affect...
For an ideal battery (r=0Ω), closing the switch in the figure (Figure 1) does not affect the brightness of bulb A. In practice, bulb A dims just a little when the switch closes. To see why, assume that the 2.0 V battery has an internal resistance 0.2Ω and that the resistance of a glowing bulb is 8.0Ω . Part A What is the current through bulb A when the switch is open? Part B What is the current through bulb...
Two identical electric bulbs are connected in series and then to a battery. The third identical...
Two identical electric bulbs are connected in series and then to a battery. The third identical bulb then is connected in parallel to the line of first two bulbs. This additional connection will: Increase the illumination produced by bulbs connected in series Decrease the illumination produced by bulbs in series Leave the illumination produced by bulbs in series unchanged It will change illumination somehow, but we need to know the voltage on battery and resistances of bulbs to answer.
The switch in the figure below is open for t < 0 and is then thrown...
The switch in the figure below is open for t < 0 and is then thrown closed at time t = 0. (a) Find the current in the inductor. (Use the following as necessary: L, R, t, and for .) IL = (b) Find the current in the switch as functions of time thereafter. (Use the following as necessary: L, R, t, and for .) Iswitch =
The switch in the figure below is open for t<0 and is then thrown closed at...
The switch in the figure below is open for t<0 and is then thrown closed at time t = 0. Assume R = 8.00 2, L = 8.00 H, and E = 15.0 V. Find the following as functions of time thereafter. Assume current is in A and time is in s. Use the following as necessary: t.)  (a) the current in the inductor (b) the current in the switch
The switch in the figure below is connected to position a for a long time interval....
The switch in the figure below is connected to position a for a long time interval. At t = 0, the switch is thrown to position b. After this time, what are the following? (Let C = 1.30 µF.) (a) the frequency of oscillation of the LC circuit Hz (b) the maximum charge that appears on the capacitor µC (c) the maximum current in the inductor mA (d) the total energy the circuit possesses at t = 3.00 s µJ
In the figure below, the switch is left in position a for a long time interval...
In the figure below, the switch is left in position a for a long time interval and is then quickly thrown to position b. Rank the magnitudes of the voltages across the four circuit elements a short time thereafter from the largest to the smallest. a.ΔV1200 Ω > ΔVL > 12.0 V > ΔV12.0 Ω b.ΔVL > ΔV1200 Ω > 12.0 V > ΔV12.0 Ω c.ΔV1200 Ω > ΔVL = 12.0 V > ΔV12.0 Ω d.ΔV1200 Ω = ΔVL >...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT