Question

In: Physics

A sliding block on a frictionless table has a mass of 0.850 kg. The hanging counterweight...

A sliding block on a frictionless table has a mass of 0.850 kg. The hanging counterweight has a mass of 0.420 kg, and the pulley is a “uniform solid cylinder” with a mass of 0.350 kg and outer radius, r = 0.0300 m. The pulley turns without friction on its axle. The essentially massless cord does not stretch and does not slip on the pulley. The block has a velocity of 0.820 m/s toward the pulley as it passes through photogate 1. (16 pts.total)

  1. Use Conservation of Total Energy, ET,i = ET,f, to predict the speed of the block after it     passes through photogate 2 which is 0.700 m away from photogate 1.                             

  

b) Find the angular speed of the pulley at the moment the block passes Photogate 2.         (6 pts.)

c) Suppose the coefficient of kinetic friction between the block and the horizontal surface was

0.250, find the new speed of the block after it has moved to a photogate 2.                 (3 pts.)

Solutions

Expert Solution


Related Solutions

A block of mass 2 kg and a block of mass 3 kg are sliding on...
A block of mass 2 kg and a block of mass 3 kg are sliding on a frictionless surface. They collide and stick together. Before the collision the first block was travelling at 5 m/s in the positive x direction. After the collision the two blocks are travelling at 6 m/s in the negative x direction. What was the x component of the velocity of the second block before the collision?
A block of mass 5 kg is sitting on a frictionless surface. The block initially has...
A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.   What is the Initial momentum of the block? kg m/s Tries 0/2 What is the Initial Kinetic Energy of the block? J Tries 0/2 What is the change in momentum of the block?   Kg m/s Tries 0/2 What is the final momentum of the block? kg m/s Tries 0/2...
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table....
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table. The coefficients of friction between the blocks are µs = 0.80 and µk = 0.20. (a) What is the maximum force F that can be applied to the 4.0 kg block if the 2.0 kg block is not to slide? ______N (b) If F is half this value, find the acceleration of each block. ______m/s2 (2.0 kg block) ______m/s2 (4.0 kg block) --Find the...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 410 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 7.60 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion? (a) Number Enter your answer for part (a)...
Two pucks are sliding across a frictionless surface. Puck A has a mass of .330 kg...
Two pucks are sliding across a frictionless surface. Puck A has a mass of .330 kg and a velocity of 5.50 m/s in the x direction. puck be has a mss of .440 kg and a velocity of 6.60 m/s in the negative x direction. the pucks collide an bounce of each other. after the collision puck a has a velocity of 1.10 m/s in the positive y-direction. What are the x and y components of the velocity of puck...
A mass sliding on a frictionless table is attached to a horizontal spring. It is noted...
A mass sliding on a frictionless table is attached to a horizontal spring. It is noted to be at position x1 moving with a speed |v1|, and several seconds later at position x2 moving with a speed |v2|. What is the period of the mass attached to the spring? Choose x1 = 0.85m, x 2 = 1.1m, |v1| = 2.4m/s, and |v2|= 1.9m/s.
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with...
On a horizontal frictionless surface, a small block with mass 0.200 kg has a collision with a block of mass 0.400 kg. Immediately after the collision, the 0.200 kg block is moving at 12.0 m/s in the direction 30
A metal block of mass 1.830 kg is hanging from a string. The tension in the...
A metal block of mass 1.830 kg is hanging from a string. The tension in the string is 1.089×101 N. The block is submerged in a beaker of fluid and is stationary. What is the magnitude and direction of the buoyant force acting on the block?
A block-spring oscillator on a frictionless table has k = 125 N/m and block mass =...
A block-spring oscillator on a frictionless table has k = 125 N/m and block mass = 0.5kg; the block is oscillating back and forth and its initial position (i.e. when t = 0 sec) is when the spring is compressed to a maximum amount of 1.25 m: a) In 10 seconds how many times does the block oscillate back and forth? b) What are the maximum kinetic energy and the maximum velocity of the block? c) Where is the block...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of...
A block of mass m1=6.6 kg rests on a frictionless horizontal surface. A second block of mass m2=9.4 kg hangs from an ideal cord of negligible mass, which runs over an ideal pulley and then is connected to the side of the first block. The blocks are released from rest. How far will block 1 move during the 1.1 second interval?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT