Question

In: Physics

Block A (0.40 kg) and block B (0.30 kg) are on a frictionless table. Spring 1...

Block A (0.40 kg) and block B (0.30 kg) are on a frictionless table. Spring 1 connects block A to a frictionless peg at 0 and spring 2 connects block A and block B. When the blocks are in uniform circular motion about 0, the springs have lengths of 0.60 m and 0.40 m, as shown. The springs are ideal and massless, and the linear speed of block B is 2.0 m/s. If the spring constant of spring 1 is equal to 30 N/m, the unstretched length of spring 1 is closest to?

Solutions

Expert Solution

Since Block A and block B are connected, they have the same angular velocity.
Angular velocity = linear velocity � radius
For block B, the radius is 1.0 meter.
Angular velocity = 2 � 1 = 2 rad/s

For block A, the radius is 0.6 meter.
2 = linear velocity � 0.6, Linear velocity = 1.2 m/s
This is the speed of block A.

Centripetal force = m * v^2/r
Since the springs have lengths of 0.60 m and 0.40 m, the distance from the peg to the block B is 1.0 meter. Since Block B is moving around a circle at a speed of 2 m/s, let�s determine the centripetal force.
Fc = 0.30 * 2^2/ 1 = 1.2 N
This is the force which spring 2 is exerting on block B.

Block A has two forces. Spring 2 is pulling is exerting a 1.2 N force, which is pulling it away from the peg. Spring 1 is pulling it toward the peg.
Net force toward the peg = Force of Spring 1 � 1.2

Block A is moving around a circle with a radius of 0.6 meter.
For block A, Fc = 0.4 * 1.2^2/0.6 = 0.96 N
This is the net force on block A.

This force caused Spring 1 to stretch from its original length to a length of 0.6 meter

F = k * ? d
0.96 = 30 * ? d
? d = 0.96 � 30
Original length = 0.6 � (0.96 � 30) = 0.568 meter


Related Solutions

A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table....
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table. The coefficients of friction between the blocks are µs = 0.80 and µk = 0.20. (a) What is the maximum force F that can be applied to the 4.0 kg block if the 2.0 kg block is not to slide? ______N (b) If F is half this value, find the acceleration of each block. ______m/s2 (2.0 kg block) ______m/s2 (4.0 kg block) --Find the...
a block of mass 2.4 kg is sitting on a frictionless ramp with a spring at...
a block of mass 2.4 kg is sitting on a frictionless ramp with a spring at the bottom that has a spring constant of 490N/m the angle of the ramp with respect to the horizontal is 31 degrees A.) the block starting from rest slides down the ramp a distance 78 cm before hitting the spring how far in cm is the spring compressed as the block comes to momentary rest? B.) After the block comes to rest the spring...
A block rests on a horizontal frictionless table. It is attached to a spring and set...
A block rests on a horizontal frictionless table. It is attached to a spring and set into motion. Consider what will happen to the frequency or period in each of the following situations. (increase, decrease, or stay the same) If the spring constant is cut in half (looser spring), the frequency will _______. If the spring constant is cut in half (looser spring), the period will _______. If the amplitude of the motion is doubled, the frequency will ______. If...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
A 1.30 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 410 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 7.60 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion? (a) Number Enter your answer for part (a)...
A block-spring oscillator on a frictionless table has k = 125 N/m and block mass =...
A block-spring oscillator on a frictionless table has k = 125 N/m and block mass = 0.5kg; the block is oscillating back and forth and its initial position (i.e. when t = 0 sec) is when the spring is compressed to a maximum amount of 1.25 m: a) In 10 seconds how many times does the block oscillate back and forth? b) What are the maximum kinetic energy and the maximum velocity of the block? c) Where is the block...
A mass m = 17 kg rests on a frictionless table and accelerated by a spring...
A mass m = 17 kg rests on a frictionless table and accelerated by a spring with spring constant k = 4916 N/m. The floor is frictionless except for a rough patch. For this rough path, the coefficient of friction is μk = 0.47. The mass leaves the spring at a speed v = 3.2 m/s. 1) How much work is done by the spring as it accelerates the mass? 2) How far was the spring stretched from its unstreched...
A mass m = 16 kg rests on a frictionless table and accelerated by a spring...
A mass m = 16 kg rests on a frictionless table and accelerated by a spring with spring constant k = 4739 N/m. The floor is frictionless except for a rough patch. For this rough path, the coefficient of friction is μk = 0.45. The mass leaves the spring at a speed v = 2.9 m/s. 1)How much work is done by the spring as it accelerates the mass? 2)How far was the spring stretched from its unstreched length? 3)The...
A 2.20 kg frictionless block is attached to an ideal spring with force constant 314 n/m...
A 2.20 kg frictionless block is attached to an ideal spring with force constant 314 n/m . Initially the block has velocity -3.70 m/s and displacement 0.270 m.Find the amplitude of the motion in mFind the maximum acceleration of the block in m/s^2Find the maximum force the spring exerts on the block in n
A sliding block on a frictionless table has a mass of 0.850 kg. The hanging counterweight...
A sliding block on a frictionless table has a mass of 0.850 kg. The hanging counterweight has a mass of 0.420 kg, and the pulley is a “uniform solid cylinder” with a mass of 0.350 kg and outer radius, r = 0.0300 m. The pulley turns without friction on its axle. The essentially massless cord does not stretch and does not slip on the pulley. The block has a velocity of 0.820 m/s toward the pulley as it passes through...
A mass of 0.30 kg is attached to a spring and set into oscillation on a...
A mass of 0.30 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.48 m)cos[(8 rad/s)t]. Determine the following. (a) amplitude of oscillation for the oscillating mass. Answer in m (b) force constant for the spring. Answer in N/m (c) position of the mass after it has been oscillating for one half a period. Answer in m (d) position of the mass...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT