Question

In: Physics

A metal block of mass 1.830 kg is hanging from a string. The tension in the...

A metal block of mass 1.830 kg is hanging from a string. The tension in the string is 1.089×101 N. The block is submerged in a beaker of fluid and is stationary. What is the magnitude and direction of the buoyant force acting on the block?

Solutions

Expert Solution

Mass of the block m = 1.830 kg

Weight of the block W = mg

                                 = 1.830 kg x 9.8 m/s 2

                                 = 17.934 N

Tension in the string T = 1.089 x10 1 N

                                 = 10.89 N

The magnitude of the buoyant force acting on the block F = W-T

                                                                                   = 7.044 N

Direction : along upward direction.i.e., opposite to weight direction


Related Solutions

A sliding block on a frictionless table has a mass of 0.850 kg. The hanging counterweight...
A sliding block on a frictionless table has a mass of 0.850 kg. The hanging counterweight has a mass of 0.420 kg, and the pulley is a “uniform solid cylinder” with a mass of 0.350 kg and outer radius, r = 0.0300 m. The pulley turns without friction on its axle. The essentially massless cord does not stretch and does not slip on the pulley. The block has a velocity of 0.820 m/s toward the pulley as it passes through...
A metal sphere hangs from a string and has 2 kg of mass. The sphere has...
A metal sphere hangs from a string and has 2 kg of mass. The sphere has a charge of +5.5
the mass of block A is 80 kg, the mass of block b is 20 kg,...
the mass of block A is 80 kg, the mass of block b is 20 kg, and A is connected to B with the cable and pulley system shown. the pulleys rotate freely, and the cable and pulleys have negligible mass. the coefficient of static fricion between A and the horizontal surface is Ms=0.4, and the coefficient of kinetic friction is Mk=0.3. a) initially, block A is being held stationary and the system is at rest in static equilibrium ....
A block of mass 2 kg and a block of mass 3 kg are sliding on...
A block of mass 2 kg and a block of mass 3 kg are sliding on a frictionless surface. They collide and stick together. Before the collision the first block was travelling at 5 m/s in the positive x direction. After the collision the two blocks are travelling at 6 m/s in the negative x direction. What was the x component of the velocity of the second block before the collision?
A small block with mass 0.350 kg is attached to a string passing through a hole...
A small block with mass 0.350 kg is attached to a string passing through a hole in a frictionless, horizontal surface. The block is originally revolving in a circle with a radius of 0.500 m about the hole with a tangential speed of 1.50 m/s, uniformly. Consider the block as a particle. Moment of inertia of a particle is I=mr2, where r is the radius of the circle. Of course a tension force of the string is holding the block...
1. A pendulum is formed by taking a 1.0 kg mass and hanging it from the...
1. A pendulum is formed by taking a 1.0 kg mass and hanging it from the ceiling using a steel wire with a diameter of 1.1 mm. It is observed that the wire stretches by 0.05 mm under the weight of the mass. What is the period of oscillation of the pendulum? 2. In order to study the long-term effects of weightlessness, astronauts in space must be weighed (or at least "massed"). One way in which this is done is...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at the end. At rest, the length of the hanging spring is 10 cm. Then, an additional 5 kg block is added to the spring, causing its length at rest to increase to 13 cm. The 5 kg block is then removed. Starting from rest, when the 5 kg block is removed, the spring begins to oscillate. What will the spring’s velocity be, the third...
An apple with mass 0.4 kg is hanging at rest from the lower end of a...
An apple with mass 0.4 kg is hanging at rest from the lower end of a light vertical rope. A dart of mass 0.1 kg is shot vertically upward, strikes the bottom of the apple, and remains embedded in it. a) If the speed of the dart is 5 m/s just before it strikes the apple, what is the speed of the apple just after the collision? b) How much energy was dissipated during the strike? c) How high does...
An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come...
An 7-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 50 N/m and the damping constant is 4 N-sec/m At time t=0, an external force of 8sin(3t)cos(3t) is applied to the system. Determine the amplitude and frequency of the steady-state solution.
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4...
A block of mass m1 = 1.31 kg and a block of mass m2 = 11.4 kg are connected by a massless string over a pulley in the shape of a solid disk having radius R = 0.250 m and mass M = 2 kg. The fixed, wedge-shaped ramp makes an angle of θ = 30.0° as shown in the figure. The coefficient of kinetic friction is 0.24 for both blocks. Determine the acceleration of the blocks.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT