Question

In: Economics

The inverse demand for a homogeneous-product Stackelberg duopoly is P = 18,000 -5Q. The cost structures...

The inverse demand for a homogeneous-product Stackelberg duopoly is P = 18,000 -5Q. The cost structures for the leader and the follower, respectively, are CL(QL) = 2,000QL and CF (QF) = 4,000QF..

a. What is the follower’s reaction function?

QF=_____ - ______ QL

b. Determine the equilibrium output level for both the leader and the follower.

Leader output:

Follower output:

c. Determine the equilibrium market price.

$

d. Determine the profits of the leader and the follower.

Leader profits: $

Follower profits: $

Solutions

Expert Solution


Related Solutions

The inverse demand for a homogeneous-product Stackelberg duopoly is P = 12,000 -5Q. The cost structures...
The inverse demand for a homogeneous-product Stackelberg duopoly is P = 12,000 -5Q. The cost structures for the leader and the follower, respectively, are CL(QL) = 3,000QL and CF (QF) = 6,000QF.. a. What is the follower’s reaction function? QF= ____ - _____ QL b. Determine the equilibrium output level for both the leader and the follower. Leader output:​ _______ Follower output: _______ c. Determine the equilibrium market price. $________ d.  Determine the profits of the leader and the follower. Leader...
The inverse demand curve for a Stackelberg duopoly is P =1932 - 3Q. The leader's cost...
The inverse demand curve for a Stackelberg duopoly is P =1932 - 3Q. The leader's cost structure is CL(QL) = 13QL. The follower's cost structure is CF(QF) = 25QF. Find the follower revenue Round all calculations to 1 decimal
The inverse market demand in a homogeneous-product Cournot duopoly is P = 140 – 2(Q1 +...
The inverse market demand in a homogeneous-product Cournot duopoly is P = 140 – 2(Q1 + Q2) and costs are Company 1, C1(Q1) = 18Q1 and Company 2 C2(Q2) = 17Q2. Calculate the equilibrium output for Company 1 Round all calculations to 1 decimal The inverse market demand in a homogeneous-product Cournot duopoly is P = 133 – 1(Q1 + Q2) and costs are Company 1, C1(Q1) = 10Q1 and Company 2 C2(Q2) = 21Q2. Calculate the equilibrium output for...
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P...
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are QL = 9, QF = 4.5 QL = 9, QF = 10.5 QL = 6, QF = 3 QL = 4, QF = 2 Please help/ explain. Thank you
Consider a homogeneous good Cournot duopoly with inverse demand function given by p = 1 –...
Consider a homogeneous good Cournot duopoly with inverse demand function given by p = 1 – Q. The two firms have identical marginal costs equal to 0.4 and propose a merger. The firms claim that the merger will result in a decrease of the marginal cost of the merged firm by x per cent. How large would x need to be for welfare to increase rather than decrease as a result of the merger?
The total cost (TC) and inverse demand equations for a monopolist are: TC=100+5Q^2 P=200?5Q a. What...
The total cost (TC) and inverse demand equations for a monopolist are: TC=100+5Q^2 P=200?5Q a. What is the profit-maximizing quantity? b. What is the profit-maximizing price? c. What is the monopolist's maximum profit? The demand equation for a product sold by a monopolist is Q=25?0.5P TC=225+5Q+0.25Q^2 a. Calculate the profit-maximizing price and quantity. b. What is the monopolist's profit?
In a homogeneous product duopoly, each firm has constant marginal cost equal to 10.  The market inverse...
In a homogeneous product duopoly, each firm has constant marginal cost equal to 10.  The market inverse demand curve is p = 250 – 2Q  where Q = q1 + q2 is the sum of the outputs of firms 1 and 2, and p  is the price of the good. Marginal and average cost for each firm is 10.   (a) What are the Cournot and Bertrand equilibrium quantities and prices in this market?  In a two period version of the model in which each...
Question 4 Two firms compete as a Stackelberg duopoly. The demand they face is P =...
Question 4 Two firms compete as a Stackelberg duopoly. The demand they face is P = 40 − Q. The cost function for each firm is C(Q) = 4Q. What are the profits of the two firms? I believe the answer is πL = $162; πF = $81. however I need clear steps to understand how to understand the process.
Two firms compete in a homogeneous product market where the inverse demand function is P =...
Two firms compete in a homogeneous product market where the inverse demand function is P = 10 -2Q (quantity is measured in millions). Firm 1 has been in business for one year, while Firm 2 just recently entered the market. Each firm has a legal obligation to pay one year’s rent of $0.5 million regardless of its production decision. Firm 1’s marginal cost is $2, and Firm 2’s marginal cost is $6. The current market price is $8 and was...
Two firms compete in a market to sell a homogeneous product with inverse demand function P...
Two firms compete in a market to sell a homogeneous product with inverse demand function P = 600 − 3Q. Each firm produces at a constant marginal cost of $300 and has no fixed costs. Use this information to compare the output levels and profits in settings characterized by Cournot, Stackelberg, Bertrand, and collusive behavior.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT