In: Economics
The inverse market demand in a homogeneous-product Cournot duopoly is P = 140 – 2(Q1 + Q2) and costs are Company 1, C1(Q1) = 18Q1 and Company 2 C2(Q2) = 17Q2. Calculate the equilibrium output for Company 1 Round all calculations to 1 decimal
The inverse market demand in a homogeneous-product Cournot duopoly is P = 133 – 1(Q1 + Q2) and costs are Company 1, C1(Q1) = 10Q1 and Company 2 C2(Q2) = 21Q2. Calculate the equilibrium output for Company 2 Round all calculations to 1 decimal
P = 140 - 2(q1+q2)
Company 1:
Total Revenue TR = P*q1 = 140q1 - 2q12 - 2q1q2
Marginal Revenue = dTR/dq1 = 140 - 4q1 - 2q2
Marginal Cost = 18
The firm equates MR and MC
140-4q1-2q2 = 18
4q1 = 122-2q2
q1 = 30.5 - 0.5q2 ...........1
Company 2:
Total Revenue TR = P*q2 = 140q2 - 2q22 - 2q1q2
Marginal Revenue = dTR/dq1 = 140 - 4q2 - 2q1
Marginal Cost = 17
The firm equates MR and MC
140-4q2-2q1 = 17
4q2 = 123-2q1
q2 = 30.75 - 0.5q1............ Put this value in equation 1 above,
q1 = 30.5 - 0.5q2
q1 = 30.5 - 0.5(30.75 - 0.5q1)
q1 = 30.5 - 15.375 + 0.25q1
0.75q1 = 15.125
q1 = 20.17
Second question:
P = 133 - 1(q1+q2)
Company 1:
Total Revenue TR = P*q1 = 133q1 - q12 - q1q2
Marginal Revenue = dTR/dq1 = 133 - 2q1 - q2
Marginal Cost = 10
The firm equates MR and MC
133 - 2q1 - q2 = 10
2q1 = 123-q2
q1 = 61.5 - 0.5q2 ...........2
Company 2:
Total Revenue TR = P*q2 = 133q2 - q22 - q1q2
Marginal Revenue = dTR/dq1 = 133 - 2q2 - q1
Marginal Cost = 21
The firm equates MR and MC
133 - 2q2 - q1 = 21
2q2 = 112-q1
q2 = 56 - 0.5q1. Put this value in equation 2 above we get,
q1 = 61.5 - 0.5q2
q1 = 61.5 - 0.5(56 - 0.5q1)
q1 = 61.5 - 28 + 0.25q1
0.75q1 = 33.5
q1 = 44.67
Please give a thumbs up if you found the answer helpful.