In: Statistics and Probability
- Create a plot of the variable "fortw" (fortified wine sales).
- Create a plot of the ACF function for the same variable.
- create a naive and exponential smoothing forecast for the variable "fortw". makw sure to take into account the attricutes that yous aw fromthe above plots. make sure to produce plots with the actual data and forecasts overlaid (one graph per forecasting technique)
- Using the Mean Absolute Percentage Error (MAPE) measure of error, which of the forecasting techniques perform best?
- create a forecast for 1 period ahead (i.e. outside fo the sample).
- Compare the 1 period ahead forecasts for the 2 different basic forecasting techniques. Hint: the predict() functio will be helpful for the exponetial smoothing method.
Repeat the entirety of the above analysis but with the variable x.
Can someone aswer this Using R Script? What are the fuctions and steps to writing this script?
winet | fortw | dryw | sweetw | red | rose | spark |
1 | 2585 | 1954 | 85 | 464 | 112 | 1686 |
2 | 3368 | 2302 | 89 | 675 | 118 | 1591 |
3 | 3210 | 3054 | 109 | 703 | 129 | 2304 |
4 | 3111 | 2414 | 95 | 887 | 99 | 1712 |
5 | 3756 | 2226 | 91 | 1139 | 116 | 1471 |
6 | 4216 | 2725 | 95 | 1077 | 168 | 1377 |
7 | 5225 | 2589 | 96 | 1318 | 118 | 1966 |
8 | 4426 | 3470 | 128 | 1260 | 129 | 2453 |
9 | 3932 | 2400 | 124 | 1120 | 205 | 1984 |
10 | 3816 | 3180 | 111 | 963 | 147 | 2596 |
11 | 3661 | 4009 | 178 | 996 | 150 | 4087 |
12 | 3795 | 3924 | 140 | 960 | 267 | 5179 |
13 | 2285 | 2072 | 150 | 530 | 126 | 1530 |
14 | 2934 | 2434 | 132 | 883 | 129 | 1523 |
15 | 2985 | 2956 | 155 | 894 | 124 | 1633 |
16 | 3646 | 2828 | 132 | 1045 | 97 | 1976 |
17 | 4198 | 2687 | 91 | 1199 | 102 | 1170 |
18 | 4935 | 2629 | 94 | 1287 | 127 | 1480 |
19 | 5618 | 3150 | 109 | 1565 | 222 | 1781 |
20 | 5454 | 4119 | 155 | 1577 | 214 | 2472 |
21 | 3624 | 3030 | 123 | 1076 | 118 | 1981 |
22 | 2898 | 3055 | 130 | 918 | 141 | 2273 |
23 | 3802 | 3821 | 150 | 1008 | 154 | 3857 |
24 | 2369 | 4001 | 163 | 1063 | 226 | 4551 |
25 | 2369 | 2529 | 101 | 544 | 89 | 1510 |
26 | 2511 | 2472 | 123 | 635 | 77 | 1329 |
27 | 3079 | 3134 | 127 | 804 | 82 | 1518 |
28 | 3728 | 2789 | 112 | 980 | 97 | 1790 |
29 | 4151 | 2758 | 108 | 1018 | 127 | 1537 |
30 | 4326 | 2993 | 116 | 1064 | 121 | 1449 |
31 | 5054 | 3282 | 153 | 1404 | 117 | 1954 |
32 | 5138 | 3437 | 163 | 1286 | 117 | 1897 |
33 | 3310 | 2804 | 128 | 1104 | 106 | 1706 |
34 | 3508 | 3076 | 142 | 999 | 112 | 2514 |
35 | 3790 | 3782 | 170 | 996 | 134 | 3593 |
36 | 3446 | 3889 | 214 | 1015 | 169 | 4524 |
37 | 2127 | 2271 | 134 | 615 | 75 | 1609 |
38 | 2523 | 2452 | 122 | 722 | 108 | 1638 |
39 | 3017 | 3084 | 142 | 832 | 115 | 2030 |
40 | 3265 | 2522 | 156 | 977 | 85 | 1375 |
41 | 3822 | 2769 | 145 | 1270 | 101 | 1320 |
42 | 4027 | 3438 | 169 | 1437 | 108 | 1245 |
43 | 4420 | 2839 | 134 | 1520 | 109 | 1600 |
44 | 5255 | 3746 | 165 | 1708 | 124 | 2298 |
45 | 4009 | 2632 | 156 | 1151 | 105 | 2191 |
46 | 3074 | 2851 | 111 | 934 | 95 | 2511 |
47 | 3465 | 3871 | 165 | 1159 | 135 | 3440 |
48 | 3718 | 3618 | 197 | 1209 | 164 | 4923 |
49 | 1954 | 2389 | 124 | 699 | 88 | 1609 |
50 | 2604 | 2344 | 124 | 830 | 85 | 1435 |
51 | 3626 | 2678 | 139 | 996 | 112 | 2061 |
52 | 2836 | 2492 | 137 | 1124 | 87 | 1789 |
53 | 4042 | 2858 | 127 | 1458 | 91 | 1567 |
54 | 3584 | 2246 | 134 | 1270 | 87 | 1404 |
55 | 4225 | 2800 | 136 | 1753 | 87 | 1597 |
56 | 4523 | 3869 | 171 | 2258 | 142 | 3159 |
57 | 2892 | 3007 | 112 | 1208 | 95 | 1759 |
58 | 2876 | 3023 | 110 | 1241 | 108 | 2504 |
59 | 3420 | 3907 | 147 | 1265 | 139 | 4273 |
60 | 3159 | 4209 | 196 | 1828 | 159 | 5274 |
61 | 2101 | 2353 | 112 | 809 | 61 | 1771 |
62 | 2181 | 2570 | 118 | 997 | 82 | 1682 |
63 | 2724 | 2903 | 125 | 1164 | 124 | 1846 |
64 | 2954 | 2910 | 122 | 1205 | 93 | 1589 |
65 | 4092 | 3782 | 120 | 1538 | 108 | 1896 |
66 | 3470 | 2759 | 118 | 1513 | 75 | 1379 |
67 | 3990 | 2931 | 281 | 1378 | 87 | 1645 |
68 | 4239 | 3641 | 344 | 2083 | 103 | 2512 |
69 | 2855 | 2794 | 366 | 1357 | 90 | 1771 |
70 | 2897 | 3070 | 362 | 1536 | 108 | 3727 |
71 | 3433 | 3576 | 580 | 1526 | 123 | 4388 |
72 | 3307 | 4106 | 523 | 1376 | 129 | 5434 |
73 | 1914 | 2452 | 348 | 779 | 57 | 1606 |
74 | 2214 | 2206 | 246 | 1005 | 65 | 1523 |
75 | 2320 | 2488 | 197 | 1193 | 67 | 1577 |
76 | 2714 | 2416 | 306 | 1522 | 71 | 1605 |
77 | 3633 | 2534 | 279 | 1539 | 76 | 1765 |
78 | 3295 | 2521 | 280 | 1546 | 67 | 1403 |
79 | 4377 | 3093 | 358 | 2116 | 110 | 2584 |
80 | 4442 | 3903 | 431 | 2326 | 118 | 3318 |
81 | 2774 | 2907 | 448 | 1596 | 99 | 1562 |
82 | 2840 | 3025 | 433 | 1356 | 85 | 2349 |
83 | 2828 | 3812 | 504 | 1553 | 107 | 3987 |
84 | 3758 | 4209 | 579 | 1613 | 141 | 5891 |
85 | 1610 | 2138 | 384 | 814 | 58 | 1389 |
86 | 1968 | 2419 | 335 | 1150 | 65 | 1442 |
87 | 2248 | 2622 | 320 | 1225 | 70 | 1548 |
88 | 3262 | 2912 | 496 | 1691 | 86 | 1935 |
89 | 3164 | 2708 | 448 | 1759 | 93 | 1518 |
90 | 2972 | 2798 | 377 | 1754 | 74 | 1250 |
91 | 4041 | 3254 | 523 | 2100 | 87 | 1847 |
92 | 3402 | 2895 | 468 | 2062 | 73 | 1930 |
93 | 2898 | 3263 | 428 | 2012 | 101 | 2638 |
94 | 2555 | 3736 | 520 | 1897 | 100 | 3114 |
95 | 3056 | 4077 | 493 | 1964 | 96 | 4405 |
96 | 3717 | 4097 | 662 | 2186 | 157 | 7242 |
97 | 1755 | 2175 | 304 | 966 | 63 | 1853 |
98 | 2193 | 3138 | 308 | 1549 | 115 | 1779 |
99 | 2198 | 2823 | 313 | 1538 | 70 | 2108 |
100 | 2777 | 2498 | 328 | 1612 | 66 | 2336 |
101 | 3076 | 2822 | 354 | 2078 | 67 | 1728 |
102 | 3389 | 2738 | 338 | 2137 | 83 | 1661 |
103 | 4231 | 4137 | 483 | 2907 | 79 | 2230 |
104 | 3118 | 3515 | 355 | 2249 | 77 | 1645 |
105 | 2524 | 3785 | 439 | 1883 | 102 | 2421 |
106 | 2280 | 3632 | 290 | 1739 | 116 | 3740 |
107 | 2862 | 4504 | 352 | 1828 | 100 | 4988 |
108 | 3502 | 4451 | 454 | 1868 | 135 | 6757 |
109 | 1558 | 2550 | 306 | 1138 | 71 | 1757 |
110 | 1940 | 2867 | 303 | 1430 | 60 | 1394 |
111 | 2226 | 3458 | 344 | 1809 | 89 | 1982 |
112 | 2676 | 2961 | 254 | 1763 | 74 | 1650 |
113 | 3145 | 3163 | 309 | 2200 | 73 | 1654 |
114 | 3224 | 2880 | 310 | 2067 | 91 | 1406 |
115 | 4117 | 3331 | 379 | 2503 | 86 | 1971 |
116 | 3446 | 3062 | 294 | 2141 | 74 | 1968 |
117 | 2482 | 3534 | 356 | 2103 | 87 | 2608 |
118 | 2349 | 3622 | 318 | 1972 | 87 | 3845 |
119 | 2986 | 4464 | 405 | 2181 | 109 | 4514 |
120 | 3163 | 5411 | 545 | 2344 | 137 | 6694 |
121 | 1651 | 2564 | 268 | 970 | 43 | 1720 |
122 | 1725 | 2820 | 243 | 1199 | 69 | 1321 |
123 | 2622 | 3508 | 273 | 1718 | 73 | 1859 |
124 | 2316 | 3088 | 273 | 1683 | 77 | 1628 |
125 | 2976 | 3299 | 236 | 2025 | 69 | 1615 |
126 | 3263 | 2939 | 222 | 2051 | 76 | 1457 |
127 | 3951 | 3320 | 302 | 2439 | 78 | 1899 |
128 | 2917 | 3418 | 285 | 2353 | 70 | 1605 |
129 | 2380 | 3604 | 309 | 2230 | 83 | 2424 |
130 | 2458 | 3495 | 322 | 1852 | 65 | 3116 |
131 | 2883 | 4163 | 362 | 2147 | 110 | 4286 |
132 | 2579 | 4882 | 471 | 2286 | 132 | 6047 |
133 | 1330 | 2211 | 198 | 1007 | 54 | 1902 |
134 | 1686 | 3260 | 253 | 1665 | 55 | 2049 |
135 | 2457 | 2992 | 173 | 1642 | 66 | 1874 |
136 | 2514 | 2425 | 186 | 1518 | 65 | 1279 |
137 | 2834 | 2707 | 185 | 1831 | 60 | 1432 |
138 | 2757 | 3244 | 105 | 2207 | 65 | 1540 |
139 | 3425 | 3965 | 228 | 2822 | 96 | 2214 |
140 | 3006 | 3315 | 214 | 2393 | 55 | 1857 |
141 | 2369 | 3333 | 189 | 2306 | 71 | 2408 |
142 | 2017 | 3583 | 270 | 1785 | 63 | 3252 |
143 | 2507 | 4021 | 277 | 2047 | 74 | 3627 |
144 | 3168 | 4904 | 378 | 2171 | 106 | 6153 |
145 | 1545 | 2252 | 185 | 1212 | 34 | 1577 |
146 | 1643 | 2952 | 182 | 1335 | 47 | 1667 |
147 | 2112 | 3573 | 258 | 2011 | 56 | 1993 |
148 | 2415 | 3048 | 179 | 1860 | 53 | 1997 |
149 | 2862 | 3059 | 197 | 1954 | 53 | 1783 |
150 | 2822 | 2731 | 168 | 2152 | 55 | 1625 |
151 | 3260 | 3563 | 250 | 2835 | 67 | 2076 |
152 | 2606 | 3092 | 211 | 2224 | 52 | 1773 |
153 | 2264 | 3478 | 260 | 2182 | 46 | 2377 |
154 | 2250 | 3478 | 234 | 1992 | 51 | 3088 |
155 | 2545 | 4308 | 305 | 2389 | 58 | 4096 |
156 | 2856 | 5029 | 347 | 2724 | 91 | 6119 |
157 | 1208 | 2075 | 203 | 891 | 33 | 1494 |
158 | 1412 | 3264 | 217 | 1247 | 40 | 1564 |
159 | 1964 | 3308 | 227 | 2017 | 46 | 1898 |
160 | 2018 | 3688 | 242 | 2257 | 45 | 2121 |
161 | 2329 | 3136 | 185 | 2255 | 41 | 1831 |
162 | 2660 | 2824 | 175 | 2255 | 55 | 1515 |
163 | 2923 | 3644 | 252 | 3057 | 57 | 2048 |
164 | 2626 | 4694 | 319 | 3330 | 54 | 2795 |
165 | 2132 | 2914 | 202 | 1896 | 46 | 1749 |
166 | 1772 | 3686 | 254 | 2096 | 52 | 3339 |
167 | 2526 | 4358 | 336 | 2374 | 48 | 4227 |
168 | 2755 | 5587 | 431 | 2535 | 77 | 6410 |
169 | 1154 | 2265 | 150 | 1041 | 30 | 1197 |
170 | 1568 | 3685 | 280 | 1728 | 35 | 1968 |
171 | 1965 | 3754 | 187 | 2201 | 42 | 1720 |
172 | 2659 | 3708 | 279 | 2455 | 48 | 1725 |
173 | 2354 | 3210 | 193 | 2204 | 44 | 1674 |
174 | 2592 | 3517 | 227 | 2660 | 45 | 1693 |
175 | 2714 | 3905 | 225 | 3670 | 46 | 2031 |
176 | 2294 | 3670 | 205 | 2665 | 44 | 1495 |
177 | 2416 | 4221 | 259 | 2639 | 46 | 2968 |
178 | 2016 | 4404 | 254 | 2226 | 51 | 3385 |
179 | 2799 | 5086 | 275 | 2586 | 63 | 3729 |
180 | 2467 | 5725 | 394 | 2684 | 84 | 5999 |
181 | 1153 | 2367 | 159 | 1185 | 30 | 1070 |
182 | 1482 | 3819 | 230 | 1749 | 39 | 1402 |
183 | 1818 | 4067 | 188 | 2459 | 45 | 1897 |
184 | 2262 | 4022 | 195 | 2618 | 52 | 1862 |
185 | 2612 | 3937 | 189 | 2585 | 28 | 1670 |
186 | 2967 | 4365 | 220 | 3310 | 40 | 1688 |
187 | 3179 | 4290 | 274 | 3923 | 62 | 2031 |
solving first 4
use library forecast using
library(forecast)
load the data in t1
convert to time series using
t<-ts(t1$fortw)
plot t using
plot(t)
we see a downward trend in the time series so we try to detrend usingfirst differece
t.d<-diff(t)
plotting we get
now acf
acf(t.d)
now we create the models
for nsive we use rwf
m1<-rwf(t.d)
plot(forecast(m1))
for smoothing we use
m2<-HoltWinters(t.d , beta = F, gamma=F)
plot(forecast(m2))
from summary we get the MAPE
for naive we have:
infinity
this is due to a zero record in the t.d (differenced variable)
so we remove this and calulate MAPE maually
t.d<-t.d[-24]
m2.fitted<-m2$fitted[,1][-24]
m1.fitted<-m1$fitted[-24]
mape_exp<-(100/185)*sum((abs(m2.fitted-t.d[2:185])/t.d[2:185]))
mape_naive<-(100/187)*sum((abs(m1.fitted[2:185]-t.d[2:185])/t.d[2:185]))
we have naive mape ~ 81
exponential mape: 16
so exponential is better as it is lower