In: Physics
find velocity at top of the incline
v^2 = v0^2 + 2 a L
v = sqrt(2 a L)
so vx = sqrt( 2 a L) cos theta
vy = sqrt(2 a L) sin theta
and x = L cos theta
y = L sin theta
at highest point vy = 0
vy^2 = v0y^2 + 2 a y
0 = 2 a L sin(theta)^2 - 2 * g*(y - L sin(theta))
y= L sin(theta) ( a sin(theta) + g)/g
now find time to vy = 0
0 = sqrt(2 a L) sin theta - g t
t = sqrt(2 a L) sin(theta)/g
x = Lcos theta + v0x t =Lcos theta + sqrt( 2 a L) cos theta *
sqrt(2 a L) sin(theta)/g =Lcos theta + 2 a L sin(theta)
cos(theta)/g
so r = <L cos theta + 2 a L sin(theta) cos(theta)/g, L
sin(theta) ( a sin(theta) + g)/g>
b) so y = L sin theta
so
L sin theta = L sin theta + sqrt(2 a L) sin(theta)*t -
1/2*g*t^2
sqrt(2 a L) sin(theta) = 1/2 g t
t = 2 sqrt(2 a L) sin(theta)/g
now x direction
x = L cos(theta) + vx t = L cos(theta) + sqrt( 2 a L) cos(theta)*2
sqrt(2 a L) sin(theta)/g = L cos(theta) + 4 a L sin theta
costheta/g
so r = <L cos(theta) + 4 a L sin theta costheta/g, L sin
theta>