Question

In: Physics

A  test  rocket  for  Cansat  is  launched  by  accelerating  it  along  a 200m inclined plane at 1.25 m/s^2 starting from rest. The incline rise

A  test  rocket  for  Cansat  is  launched  by  accelerating  it  along  a 200m inclined plane at 1.25 m/s^2 starting from rest. The incline rises  at  30  degrees  above  the  horizontal,  and  at  the  instant the rocket  leaves  it,  its  engine  turns  off  and  the  rock
et  is  now subjected  only  to  gravity  (free  fall). Along  the  ramp,  gravity  is neglected.
a)   Find  the  maximum  height  above  the  ground  that  the  rocket reaches.
b)   The  horizontal  position  of  landing  as  measured  from  the bottom of the inclined plane (initial starting point).
c)    The velocity of the rocket right before landing.

Solutions

Expert Solution

proff of the above questions------------------------------------------------


the net acceleration (up along) = a =1.25

v^2 (launch) = 0 + 2 a s = 2 *1.25*200 = 500

v (launch) = 22.36 m/s

height of launch = h(launch) = 200 * sin 30 = 197.60 m

***************************************************************************

for the 2nd part:-----


angle of lanuch = 30 deg

position and velocity components after time (t)

y - h = v sin 30 * t - 0.5 gt^2 ------ (1)

x = v cos 30 * t ---- (2)

Vx = dx/dt = v cos 30 ------(3)

Vy = dy/dt = v sin 30 - gt ------ (4)

**************************************************************************************

now 3rd part:-


at max height > Vy=0 = v sin 30 - gt

t = v sin 30/g >> put in (1)

h(max) = y = h + v sin 30 *[v sin 30/g] - 0.5g[v sin 30/g]^2

h(max) = h + v^2 sin^2 (30)/2g

h(max) = 197.60 + [500*0.33/2*9.8] = 206.018 meter

******************************************************************************************************


Range

for time of flight (T) >>> putting y=0 >> or rocket hits the ground

(1) >>

0 - h = v sin 30 * T - 0.5 g T^2

gT^2 - 2v sin 30 * T - 2h = 0 ------ (5)

9.8 T^2 - (30.43) T - 229.44 =0

solving >. T = 6.634 s (leaving -ve time)

R = v cos 30 * T

R = 26.53 [cos 30] *6.634

R = 144.17 meter

********************************************************************************************************

Range from point A (rest) = p + R

where p = 200 cos 35 = 163.83 m

R(t) = 340 meter


Related Solutions

A test rocket is launched, starting on the ground, from rest, by accelerating it along an incline with constant acceleration "a". The incline ha
A test rocket is launched, starting on the ground, from rest, by accelerating it along an incline with constant acceleration "a". The incline has length "L", and it rises at ? degrees above the horizontal. At the instant the rocket leaves the incline, its engines turn off and it is subject only to gravity, g?+9.81m/s2.  (Air resistance can be ignored). Taking the usual x-y coordinate system, with an origin at the top edge of the incline,  (a)what is the position vector when the rocket is at its highest point?  (b)What is the position vector when the rocket is on its way back down and once again at the same height as the top edge of the incline?  Your symbolic answer should only depend on a, L,?, g, and/or numerical factors Asked by
A test rocket starting from rest at point A is launched by accelerating it along a...
A test rocket starting from rest at point A is launched by accelerating it along a 200.0-m incline at 1.80 m/s2 (Figure 1).The incline rises at 35.0∘ above the horizontal, and at the instant the rocket leaves it, its engines turn off and the rocket is subject to gravity only (ignore air resistance). a) Find the maximum height above the ground that the rocket reaches. b) Find the rocket's greatest horizontal range beyond point A.
At the base of a vertical cliff, a model rocket, starting from rest, is launched upwards...
At the base of a vertical cliff, a model rocket, starting from rest, is launched upwards at t = 0 with a time-varying acceleration given by ay(t) = A - Bt (3) where A and B are positive constants. Also at t = 0, a small stone is released from rest from the top of the cliff at a height h directly above the rocket. (This heighth is higher than the maximum height reached by the rocket.) The stone hits...
A rocket starts from the rest 100[m] above the ground and is launched such that it...
A rocket starts from the rest 100[m] above the ground and is launched such that it accelerates at a 30degree incline from the horizontal at a rate of 6.78[m/s^2]. If the wind resistance along the horizontal direction is 2.87[m/s^2], find the maximum elevation, range and flight time of the rocket.
A 0.200 kg ball starting from rest rolls down an inclined plane with θ=30°. a)Find the...
A 0.200 kg ball starting from rest rolls down an inclined plane with θ=30°. a)Find the acceleration of the ball, and the magnitude of normal force exerted by the plane. b) If it starts from rest a height h = 30.0 cm above its position at the bottom of the incline (measured between the center of the ball at each position), what is the speed of the ball vf at that bottom point, and how long did it take to...
an object m = 3.05kg rolls from rest down an incline plane, its center initially at...
an object m = 3.05kg rolls from rest down an incline plane, its center initially at a height of 7.55m above the bottom of the ramp. The inclination of the incline as measured from the horizontal is 37.3o. If the object is a solid uniform cylinder of radius r = 1.25m, then at the bottom of the incline, what is the (a) rotational kinetic energy and (b) the angular momentum. If the object is a hoop of radius, r =...
A rocket is fired straight upward, starting from rest with an acceleration of 25.0 m/s2. It...
A rocket is fired straight upward, starting from rest with an acceleration of 25.0 m/s2. It runs out of fuel at the end of 4.00 s and continues to coast upward, reaching a maximum height before falling back to Earth. (a) Find the rocket’s height when it runs out of fuel; (b) find the rocket’s velocity when it runs out of fuel; (c) find the maximum height the rocket reaches; (d) find the rocket’s velocity the instant before the rocket...
a rocket rises vertically from rest, with an acceleration of 3.2 m/s(s) until it runs out...
a rocket rises vertically from rest, with an acceleration of 3.2 m/s(s) until it runs out of fuel at an altitude of 845 m. After this point, its acceleration is that of gravity, downward. what is the velocity when the rocket runs out of fuel? how long does it take to reach that point? what is the maximum altitude and how long to reach it? what is the velocity when it strikes earth? how long is the rocket in the...
Starting from rest, a 4.20-kg block slides 2.30 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.20-kg block slides 2.30 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is μk = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
Starting from rest, a 5 kg block slides 2.5 m down a roughly 30 degree incline....
Starting from rest, a 5 kg block slides 2.5 m down a roughly 30 degree incline. the coefficient of kinetic friction between the block and the incline is uk= .436. Determine a) the work done by the force of gravity, b) the work done by the friction force between the rock and the incline and c) the work done by the normal force. d) qualitatively how would answers change if a shorter ramp at a steeper angle were used to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT