Question

In: Math

Scores on an MBA placement exam are reported to have a normal distribution with standard deviation...

  1. Scores on an MBA placement exam are reported to have a normal distribution with standard deviation 18. The exam officials stated that the average score for all students was 70. You take a random sample of 50 students and find their average score is 67. Use your data to estimate the mean score for all students taking the MBA placement exam -Verify your answer using calculations and show your work.
  1. Students at the union want to estimate the average number of ounces of coffee in a cup. They take a random sample of 40 cups and find the mean is 5.2 ounces. Assume amount dispensed has a normal distribution and that the standard deviation is set at 0.24 ounces per cup. Find your best estimate for the average amount of coffee being dispensed by this machine. Verify your answer using calculations and show your work.

Solutions

Expert Solution

Answer 1)

Thus, at 0.05 significance level, there is not enough evidence to claim that the average score for all students is different than 70.

Answer 2)

We are 95% confidence that the average amount of coffee being dispensed by this machine is between 5.138 and 5.262 ounces.


Related Solutions

Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of...
Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of 80. USe the distribution to determine the following. (Z score must be rounded to two decimal places: (a) The Z- score for a SAT of 380 (2pts) (b) The percent of SAT scores that fall above 610 (3pts) (c) The prpbability that sn SAT score falls below 720 (3pts) (d) The percentage of SAT scores that fall between 470 and 620 (4pts)
8) Scores on an exam have a normal distribution with a mean of 80 and a...
8) Scores on an exam have a normal distribution with a mean of 80 and a standard deviation of 12. a) Find the probability that a person would score above 90. b) Find the probability that a person would score between 75 and 85. c) Find the probability that a group of 7 people would have a mean score above 84. d) Find the score needed to be in the top 10% of the class.
Scores on an aptitude test are known to follow a normal distribution with a standard deviation...
Scores on an aptitude test are known to follow a normal distribution with a standard deviation of 32.4 points. A random sample of 12 test scores had a mean score of 189.7 points. Based on the sample results, a confidence interval for the population mean is found extending from 171.4 to 208 points. Find the confidence level of this interval. Margin of Error (ME)= ? Z-Score (Z-a/2)= ? Confidence Level= ?
The test scores for a math exam have a mean of 72 with a standard deviation...
The test scores for a math exam have a mean of 72 with a standard deviation of 8.5. Let the random variable X represent an exam score. a) Find the probability that an exam score is at most 80. (decimal answer, round to 3 decimal places) b) Find the probability that an exam score is at least 60. (decimal answer, round to 3 decimal places) c) Find the probability that an exam score is between 70 and 90. (decimal answer,...
Problem 8 IQ scores have a normal distribution with mean µ = 100 and standard deviation...
Problem 8 IQ scores have a normal distribution with mean µ = 100 and standard deviation σ = 15. (A) Find the probability that the IQ score of a randomly selected person is smaller than 107. (B) Find the 95th percentile of IQ scores.
College entrance examination scores (X) have an approximately normal distribution with mean 500 and standard deviation...
College entrance examination scores (X) have an approximately normal distribution with mean 500 and standard deviation 100. (b) If 4 scores are selected at random, what is the distribution of their average? Include the name of the distribution and the values of any parameters. Show work if possible. (c) If 4 scores are selected at random, what is the probability that their average is 510 or greater? (d) If 25 scores are selected at random, what is the probability that...
IQ scores in a large population have a normal distribution with mean=100 and standard deviation=15. What...
IQ scores in a large population have a normal distribution with mean=100 and standard deviation=15. What is the probability the sample mean for n=2 will be 121 or higher? (I understand the z score equals 1.98,could you please explain to me how the final answer is equal to 0.0239?thanks.) Also, why do we use 1 and subtract 0.9761 to get 0.0239? Where does 0.9761 come from?
The distribution of certain test scores is a nonstandard normal distribution with a mean of 50 and a standard deviation of 6
The distribution of certain test scores is a nonstandard normal distribution with a mean of 50 and a standard deviation of 6. What are the values of the mean and standard deviation after all test scores have been standardized by converting them to z-scores using z = (x - µ) / σ ?Select one:a. The mean is 1 and the standard deviation is 0.b. The mean is 0 and the standard deviation is 1.c. The mean is 100 and the...
A) Suppose that the mean and standard deviation of the scores on a statistics exam are...
A) Suppose that the mean and standard deviation of the scores on a statistics exam are 89.2 and 6.49, respectively, and are approximately normally distributed. Calculate the proportion of scores below 77. 1) 0.0301 2) 0.9699 3) We do not have enough information to calculate the value. 4) 0.2146 5) 0.7854 B) When students use the bus from their dorms, they have an average commute time of 8.974 minutes with standard deviation 3.1959 minutes. Approximately 66.9% of students reported a...
Scores of female tests had a mean of 63% (assume normal distribution with a standard deviation...
Scores of female tests had a mean of 63% (assume normal distribution with a standard deviation of 10%). A. A girl is randomly selected from all females whose scores are higher than 75%. What is the probability that the girls score is higher than 96%. B. One thousand people are randomly selected. What is the probability that fewer than 100 of them have a score higher than 75%? Use normal approximation of binomial distribution. The weight of adult males are...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT