Question

In: Statistics and Probability

The test scores for a math exam have a mean of 72 with a standard deviation...

The test scores for a math exam have a mean of 72 with a standard deviation of 8.5.

Let the random variable X represent an exam score.

a) Find the probability that an exam score is at most 80. (decimal answer, round to 3 decimal places)

b) Find the probability that an exam score is at least 60. (decimal answer, round to 3 decimal places)

c) Find the probability that an exam score is between 70 and 90. (decimal answer, round to 3 decimal places)   

d) Find the 75th percentile score. (round to 1 decimal place)

e) Would it be unusual for a random exam to have a score of 92?

A) Yes, because the probability of scoring 92 is below 0.05.

B) Yes, because a score of 92 is more than 2 standard deviations above the mean.

C) No, because the probability of scoring 92 is above 0.05.

D) No, because a score of 92 is within 2 standard deviations of the mean.

E) None of the above.

Solutions

Expert Solution


Related Solutions

A) Suppose that the mean and standard deviation of the scores on a statistics exam are...
A) Suppose that the mean and standard deviation of the scores on a statistics exam are 89.2 and 6.49, respectively, and are approximately normally distributed. Calculate the proportion of scores below 77. 1) 0.0301 2) 0.9699 3) We do not have enough information to calculate the value. 4) 0.2146 5) 0.7854 B) When students use the bus from their dorms, they have an average commute time of 8.974 minutes with standard deviation 3.1959 minutes. Approximately 66.9% of students reported a...
Past test scores in my math course typically have a standard deviation equal to 14.1. The...
Past test scores in my math course typically have a standard deviation equal to 14.1. The class from last semester had 27 test scores with a standard deviation of 9.3. Use a 0.01 significance level to test the claim that the class from last semester has less variation than the other classes from the past. Assume a simple random sample is selected from a normally distributed population. Write the conclusion utilizing the “correct” words using Table 8-3, p. 366. Make...
A set of exam scores is normally distributed with a mean = 82 and standard deviation...
A set of exam scores is normally distributed with a mean = 82 and standard deviation = 4. Use the Empirical Rule to complete the following sentences. 68% of the scores are between and . 95% of the scores are between and . 99.7% of the scores are between and . LicensePoints possible: 3 This is attempt 1 of 3.
PART I Suppose that the mean and standard deviation of the scores on a statistics exam...
PART I Suppose that the mean and standard deviation of the scores on a statistics exam are 78 and 6.11, respectively, and are approximately normally distributed. Calculate the proportion of scores above 74. 1) 0.8080 2) 0.1920 3) 0.2563 4) We do not have enough information to calculate the value. 5) 0.7437 PART II When students use the bus from their dorms, they have an average commute time of 9.969 minutes with standard deviation 3.9103 minutes. Approximately 27.23% of students...
A set of exam scores is normally distributed with a mean = 80 and standard deviation...
A set of exam scores is normally distributed with a mean = 80 and standard deviation = 8. Use the Empirical Rule to complete the following sentences. 68% of the scores are between  and . 95% of the scores are between  and . 99.7% of the scores are between  and . Get help: Video
Scores on a national exam vary normally with a mean of 400 and standard deviation of...
Scores on a national exam vary normally with a mean of 400 and standard deviation of 75. a. What must a student score to be in the 90th percentile? b. if 16 student take the exam, what is the probabiltiy that their mean score is at most 390? Please make sure you explain and show your work, as to how you got the standard devation of 75?
Test scores from a college math course follow a normal distribution with mean = 72 and...
Test scores from a college math course follow a normal distribution with mean = 72 and standard deviation = 8 Let x be the test score. Find the probability for a) P(x < 66) b) P(68<x<78) c) P(x>84) d) If 600 students took this test, how many students scored between 62 and 72?
GRE math scores are normally distributed with a mean µ = 500 and standard deviation, ...
GRE math scores are normally distributed with a mean µ = 500 and standard deviation,  = 55. This year Howard University admitted 1500 graduate students. Calculate: a.   the number of students with test scores above 520, below 490, between 482 & 522 b.   how high a score is needed to be in the top 10%, top 5%?
1. SAT math scores are normally distributed with a mean 525 and a standard deviation of...
1. SAT math scores are normally distributed with a mean 525 and a standard deviation of 102. In order to qualify for a college you are interested in attending your SAT math score must be in the highest 9.34% of all SAT scores. What is the minimum score you need on the SAT to qualify for the college? 2. If you get into this college you are interested in running for the track team. To qualify for the track team...
Math SAT scores are known to be normally distributed with mean of 500 and standard deviation...
Math SAT scores are known to be normally distributed with mean of 500 and standard deviation of 100. Answer the following questions. (I also want to see good notation and some of your calculations.) a) Suppose we randomly select one person who has taken the SAT. What is the probability their math score is between 525 and 550? b) Suppose we randomly select 25 people who have taken the SAT. What is the probability their average math score is between...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT