Question

In: Chemistry

Answer the following: a. Find the energy needed to excite an electron in hydrogen from the...

Answer the following:

a. Find the energy needed to excite an electron in hydrogen from the ground state to the n=5 excited state.

b. What is the wavelength and frequency of the photon emitted when this electron relaxes to the n=2 state?

c. How much energy would it take to remove an electron from hydrogen? (transition from n=1 to n=∞)

Solutions

Expert Solution


Related Solutions

6.)How much energy is required to excite a hydrogen atom's electron from n=2 to n=5? Enter...
6.)How much energy is required to excite a hydrogen atom's electron from n=2 to n=5? Enter your answer with 2 significant figures. Note: Your answer is assumed to be reduced to the highest power possible. 6 b.) Calculate the wavelength of light that is required to excite a hydrogen atom's electron from n=2 to n=5? Enter your answer in meters with 2 significant figures. Note: Your answer is assumed to be reduced to the highest power possible.
a) Find the energy of an electron in the n=5 state of the hydrogen atom.
a) Find the energy of an electron in the n=5 state of the hydrogen atom. b) Find the energy of an electron in the n=6 state of the hydrogen atom. c) If an electron initially in the n= 6 state falls to the n= 5 state, how much energy must the electron give up? d) If an electron initially in the n= 6 state falls to the n=5 state, what is the wavelength of the photon that will be emitted?
Consider Hydrogen with an electron in the n = 2 state. a) Find the Energy of...
Consider Hydrogen with an electron in the n = 2 state. a) Find the Energy of the electron. The electron is in the 2p state. Then it moves to the 1s state. b) Calculate the energy of the emitted photon. The atom is placed in a magnetic field of 500 T. c) Find the energies of all the emitted photons. Don't worry about electron spin.
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a...
The hydrogen atom electron is in the ground state. The electron absorbs energy and makes a transition to the n=3 state. Then it returns to the ground state by emitting two photons when going to n=2 and then n=1 states. A. What are the wavelengths of these photons? B. What will be the wavelength if only one photon is emitted? C. What is the maximum number of electrons with ml=3 in the shell with n=5? D. How many electrons with...
In a hydrogen atom, how might an electron move from one energy level to another?
In a hydrogen atom, how might an electron move from one energy level to another?
The binding energy of an electron in the ground state in a hydrogen atom is about:...
The binding energy of an electron in the ground state in a hydrogen atom is about: A. 13.6 eV B. 3.4 eV C. 10.2 eV D. 1.0 eV E. 27.2 eV
If a single electron in an excited hydrogen atom is occupying the 3rd energy level and...
If a single electron in an excited hydrogen atom is occupying the 3rd energy level and then relaxes back to the ground state, how much energy is released in the form of electromagnetic radiation?
Consider a hydrogen atom in the ground state. What is the energy of its electron? E=...
Consider a hydrogen atom in the ground state. What is the energy of its electron? E= J Consider a hydrogen atom in an excited state of 2s^1. What is the energy of its electron? E= J
Calculate the energy (J) of the photon emitted when an electron in the hydrogen atom falls...
Calculate the energy (J) of the photon emitted when an electron in the hydrogen atom falls from n=5 to n=2 . Use 2.178 x 10-18 J for the constant in the Bohr equation. Answer should be in scientific notation, e.g. 3000 = 3E3 I have no idea how to get this problem help me!!
14: An electron in hydrogen atom at the energy level n = 7 undergo a transition...
14: An electron in hydrogen atom at the energy level n = 7 undergo a transition to level n = 3: Find the frequency and the energy of the emitted photon. 15: An electron jumps from higher energy level to the first energy level with an energy difference of 2.04375 x 10-18 J. find the initial energy level. Show your calculations, 16: A: What will be the speed of an electron at 4 th energy level? Suppose the electron has...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT