Question

In: Physics

A series RL circuit is built with 190 Ω resistor and a 5.0-cm-long, 1.0-cm-diameter solenoid with...

A series RL circuit is built with 190 Ω resistor and a 5.0-cm-long, 1.0-cm-diameter solenoid with 800 turns of wire.

A) What is the peak magnetic flux through the solenoid if the circuit is driven by a 12 V, 5.0 kHz source?

B) What capacitance, in μF, has its potential difference increasing at 1.5×106 V/s when the displacement current in the capacitor is 0.60 A ?

Solutions

Expert Solution

What is the peak magnetic flux through the solenoid if the circuit is driven by a 12 V, 5.0 kHz source

first , we find the inductance , L

L = uo N2 A / L

where

A = pi * 0.5e-22 = 7.853e-5 m2

so,

L = 4e-7 * 8002 * 7.853e-5 / 0.05

L = 1.2633e-3 H

Now,

I = V / sqrt ( R2 + (2fL)2 )

I = 12 / sqrt ( 1902 + (2 * 5000 * 1.2633e-3)2 )

I = 0.0618 A

so,

peak flux

= IL

= 7.81e-5 Wb (PLEASE MIND THE UNITS !!!)

_____________________________

What capacitance, in μF, has its potential difference increasing at 1.5×106 V/s when the displacement current in the capacitor is 0.60 A

dV / dt = 1.5e6 V/s

we know

dQ / dt = C * dV / dt = I

so,

I = C * dV / dt

C = I / (dV / dt)

C = 0.6 / 1.5e6

C = 4e-7 F

OR

C = 0.4 uF (PLEASE MIND THE UNITS !!!)


Related Solutions

One RL series circuit contains the resistor R1= 2 Ω and inductor L = 10 H....
One RL series circuit contains the resistor R1= 2 Ω and inductor L = 10 H. (i) Write the first order differential equation for this circuit in time constant form. (ii) Determine the time constant for this system (iii) Calculate the steady state gain of the system. (iv) Determine the time constant and steady state gain when the inductance is doubled (v) In the context of positioning of poles on the S-plane, what does the ‘real part’ represent and what...
In an RL series circuit with L = 1/100 H, R = 20 Ω, and E...
In an RL series circuit with L = 1/100 H, R = 20 Ω, and E = 60 V. Determine the limit of the maximum current reached (At the function you found to determine the current as a function of time apply the limit when t goes to infinity) and determine the time in which it reaches half of that value. Take i (0) = 0 A.
In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an...
In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an inductor L (24.0 mH) and a battery ε (12.0 V). When the circuit is closed, current grows with time. (a) What is the time constant of the circuit? (b) What is the current in the circuit at one time constant? (c) What is the maximum magnetic energy in the circuit? (d) At what time after closing the switch will the magnetic energy be 50%...
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6...
An RLC series circuit has a 60 Ω resistor, a 3.5 mH inductor, and a 6 μF capacitor. Find the circuit’s impedance at 55 Hz and 12 kHz. If the voltage source has Vrms = 110 V, what is Irms at each frequency?    
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5...
An RLC series circuit has a 2.50 Ω resistor, a 100 µH inductor, and an 87.5 µFcapacitor. (a) If the voltage source is Vrms = 5.60 V , what is the Irms at 120 Hz? A ( ± 0.001 A) (b) What is the phase angle of the current vs voltage at this frequency? Enter a positive number between 0 and 90 degrees ( ± 0.1 degrees) (c) What is the Irms at 5.0 kHz? A ( ± 0.01 A)...
An RLC series circuit has a 2.60 Ω resistor, a 200 µH inductor, and an 82.0...
An RLC series circuit has a 2.60 Ω resistor, a 200 µH inductor, and an 82.0 µF capacitor. (a) Find the circuit's impedance (in Ω) at 120 Hz. ________Ω (b) Find the circuit's impedance (in Ω) at 5.00 kHz. ________Ω (c) If the voltage source has Vrms = 5.60 V, what is Irms (in A) at each frequency? Irms, 120 Hz= _______A Irms, 5.00 kHz= _______A (d) What is the resonant frequency (in kHz) of the circuit? ________kHz (e) What...
A series ac circuit contains a 210 Ω resistor, a 20.0 mH inductor, a 3.30 μF...
A series ac circuit contains a 210 Ω resistor, a 20.0 mH inductor, a 3.30 μF capacitor, and an ac power source of voltage amplitude 45.0 V operating at an angular frequency of 360 rad/s . 1)What is the power factor of this circuit? 2)Find the average power delivered to the entire circuit. 3)What is the average power delivered to the resistor, to the capacitor, and to the inductor?
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an ε_rms value of 90.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. A) Calculate the power supplied at t = 0.0200 s. B) Calculate the power supplied at t = 0.0375 s. C)...
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor....
An RLC series circuit consists of a 450-Ω resistor, a 3.00-mF capacitor, and a 1.00-H inductor. The circuit is driven by a power source that oscillates at 20.0 Hz and has an Erms value of 30.0 V . The power source is switched on at t = 0 and at that instant the emf is at its maximum value. Part A Calculate the power supplied at t = 0.0200 s. Part B Calculate the power supplied at t = 0.0375...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60 mH inductor, and an ac voltage source of voltage amplitude 60.0 V operating at 1450 Hz . a.) Find the current amplitude across the inductor, the resistor, and the capacitor. b.) Find the voltage amplitudes across the inductor, the resistor, and the capacitor. c.) Why can the voltage amplitudes add up to more than 60.0 V ? d.) If the frequency is now doubled,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT