Question

In: Physics

calculate the coefficient of isothermal compressibility of a gas at 440 psia and temperature of 80...

calculate the coefficient of isothermal compressibility of a gas at 440 psia and temperature of 80 F. Specific gravity of gas is 0.697. Please show all work.

Solutions

Expert Solution

Thermodynamically, Isothermal compressibility is defined as the reciprocal of Isothermal Bulk modulus of elasticity.

So we have to find Bisothermal as the first step.

Bulk modulus is defined as the ratio between pressure increase and the resulting decrease in a material's volume

  

For an Ideal gas, PV = nRT

Differentiate P with respect to V keeping temperature constant, ie isothermal ()

where nRT = PV

we know that

Given P = 440psia = 3.03 x 106 Pa (SI unit)


Related Solutions

What is the heat capacity (or specific heat), isothermal compressibility, and coefficient of thermal expansion of...
What is the heat capacity (or specific heat), isothermal compressibility, and coefficient of thermal expansion of an ideal gas, van der Waals fluid, electromagnetic field, rubber band, and a magnetic spin system?
Derive an expression for the reversible isothermal work done on n moles of gas at temperature...
Derive an expression for the reversible isothermal work done on n moles of gas at temperature T if the volume changes from V1 to V2 and the gas obeys van der Walls’ equation.
Temperature coefficient.
The temperature coefficient of most of the reactions lies between:
Calculate deltaS total for the isothermal irreversible free expansion of 1.00 mol of ideal gas from...
Calculate deltaS total for the isothermal irreversible free expansion of 1.00 mol of ideal gas from 8.0 L to 20.0 L at 298 K
Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated...
Water at 80°F and 20 psia is heated in a chamber by mixing it with saturated water vapor at 20 psia. If both streams enter the mixing chamber at the same mass flow rate, determine the temperature and the quality of the exiting stream. Include a heat loss rate of 200 kW and a net mass flow rate of the combined streams of 4 lbm/s.
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 227.5×10−6 m3 to a final volume of 101.0×10−6 m3. If 8890 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas?
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 3.00 mol of gas goes from an initial volume of 222.0 × 10 − 6 m 3 to a final volume of 123.5 × 10 − 6 m 3 . If 7.60 × 10 3 J is released by the gas during this process, what are the temperature T and the final pressure p f of the gas
Calculate the temperature T of 40 kg of CO2 gas in a 500 liter vessel at...
Calculate the temperature T of 40 kg of CO2 gas in a 500 liter vessel at 5 MPa. The critical pressure of CO2 is 7.39 MPa and the critical temperature is 31.05 ºC: also, specify the value of Z.
A steam power plant operates with a maximum pressure of 3500 psia and maximum temperature of...
A steam power plant operates with a maximum pressure of 3500 psia and maximum temperature of 1050 oF. Assume a simple Rankine cycle, condenser pressure is 10 psia, and turbomachinery is isentropic. Turbine work in Btu/lb Pump work in Btu/lb Heat addition in steam generator in Btu/lb Cycle thermal efficiency
Argon gas enters an adiabatic compressor at 16.0 psia with 99 F with a velocity of...
Argon gas enters an adiabatic compressor at 16.0 psia with 99 F with a velocity of 49.9 ft/s. It exits at 225 psia and 209.5 ft/s. If the isentropic efficiency of the compressor is 83.1%, determine: a) the exit temperature (R) of the argon b) the work input to the compressor (Btu/lbm)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT