##### PART 1: Determining the Appropriate Test Assume that the following three questions appeared on a survey...

PART 1: Determining the Appropriate Test

Assume that the following three questions appeared on a survey that is being used to collect data on consumer behavior for your company.

Question 1:         Do you subscribe to Netflix? (Circle One)                               YES         NO

Question 2:         What is your monthly average income in dollars?               \$__________

Question 3:         In which of the 5 U.S. regions do you reside? (Circle one)

Northeast           Southwest          West          Midwest        Southeast

1. You want to determine if a relationship exists between the U.S. region in which the consumer resides and whether or not they are a subscriber to Netflix.

1. Given your answer in part “A” above, set up the null and alternative hypotheses to begin your test.

1. Now assume that you want to determine if the average monthly income of a consumer is different among groups of people living in different regions of the United States.

1. Given your answer in part “A” above, set up the null and alternative hypotheses to begin your test.

PART 2: Analysis of a Chi-Square test

Assume that a research study was conducted that included the following survey questions:

Question 1:         Have you ever attended an event at the city Performing Arts Center?       YES         NO

Question 2:         Have you ever attended an event at the city Athletic Center?                       YES         NO

A sample of 93 people answered the survey questions. The research team utilized Minitab statistical software to create the results shown below. You will find a contingency table with the Chi-Square test statistic and p-value at the bottom.

---------------------------------------------------------------------------------------------------------------------------------

CHI-SQUARE TEST FOR ASSOCIATION: PERFORMING ARTS CENTER ATTENDANCE, ATHLETIC CENTER ATTENDANCE

Rows: Performing Arts Center Attendance                        Columns: Athletic Center Attendance

 NO YES All NO 15 1 16 9.634 6.366 YES 41 36 77 46.366 30.634 All 56 37 93

Cell Contents:                        Count

Expected Count

 Chi-Square DF P-Value Pearson 9.072 1 0.003

Review the study and the Minitab results. Then answer the following questions:

1. If you want to determine if a relationship exists between whether or not a person attended an event at the Performing Arts center and whether or not the person attended an event at the Athletic Center, set up the null and alternative hypotheses to begin your test.
1. Find the p-value in the output. Draw a conclusion about your hypotheses based on this p-value. Be sure to explain your answer. Why did you draw the conclusion that you did?

In: Math

##### The next two questions (7 and 8) refer to the following: The weight of bags of...

The next two questions (7 and 8) refer to the following:

The weight of bags of organic fertilizer is normally distributed with a mean of 60 pounds and a standard deviation of 2.5 pounds.

7. What is the probability that a random sample of 33 bags of organic fertilizer has a total weight between 1963.5 and 1996.5 pounds?

8. If we take a random sample of 9 bags of organic fertilizer, there is a 75% chance that their mean weight will be less than what value? Keep 4 decimal places in intermediate calculations and report your final answer to 4 decimal places.

The next two questions (8 and 9) refer to the following:

Question 10 and 11

Suppose that 40% of students at a university drive to campus.

10. If we randomly select 100 students from this university, what is the approximate probability that less than 35% of them drive to campus?

Keep 6 decimal places in intermediate calculations and report your final answer to 4 decimal places.

11. If we randomly select 100 students from this university, what is the approximate probability that more than 50 of them drive to campus?

Keep 6 decimal places in intermediate calculations and report your final answer to 4 decimal places.

12. Suppose that IQs of adult Canadians follow a normal distribution with standard deviation 15. A random sample of 30 adult Canadians has a mean IQ of 112.

We would like to construct a 97% confidence interval for the true mean IQ of all adult Canadians. What is the critical value z* to be used in the interval? (You do not need to calculate the calculate the confidence interval. Simply find z*. Input a positive number since we always use the positive z* value when calculating confidence intervals.)

In: Math

##### Components of a certain type are shipped to a supplier in batches of ten. Suppose that...

Components of a certain type are shipped to a supplier in batches of ten. Suppose that 51% of all such batches contain no defective components, 33% contain one defective component, and 16% contain two defective components. Two components from a batch are randomly selected and tested. What are the probabilities associated with 0, 1, and 2 defective components being in the batch under each of the following conditions? (Round your answers to four decimal places.)

(a) Neither tested component is defective.

no defective components :

one defective component :

two defective components :

(b) One of the two tested components is defective. [Hint: Draw a tree diagram with three first-generation branches for the three different types of batches.]

no defective components :

one defective component :

two defective components :

In: Math

##### The FBI wants to determine the effectiveness of their 10 Most Wanted list. To do so,...

The FBI wants to determine the effectiveness of their 10 Most Wanted list. To do so, they need to find out the fraction of people who appear on the list that are actually caught.

Step 2 of 2 :

Suppose a sample of 362 suspected criminals is drawn. Of these people, 119 were captured. Using the data, construct the 90% confidence interval for the population proportion of people who are captured after appearing on the 10 Most Wanted list. Round your answers to three decimal places.

In: Math

##### *Repeated Measures Analysis of Variance* Examining differences between groups on one or more variables / same...

*Repeated Measures Analysis of Variance*
Examining differences between groups on one or more variables / same participants being tested more than once / with more than two groups.

What test and method would be used to examine the difference between male and female users considering the different variable (Pain Reliever, Sedative, Tranquilizer & Stimulant)

Create a graph illustration.

Describe the Graph.

 TABLE 1.22A, Misuse separated by age and 2016, 2017 Age Misuse_2016 Misuse_2017 12 66 55 13 90 105 14 160 127 15 253 234 16 322 295 17 426 415 18 537 466 19 631 503 20 692 671 21 700 661 22 659 728 23 581 660 24 648 681 25 577 585 AGE PR2016 PR2017 TR2016 TR2017 STIM2016 STIM2017 SED2016 SED2017 12 49 40 12 6 6 7 5 74 13 78 78 8 23 11 23 8 55 14 111 84 37 48 47 38 15 15 15 192 152 92 69 74 83 19 12 16 196 188 122 132 96 98 25 18 17 255 226 162 181 193 202 28 18 18 259 233 232 184 254 229 21 17 19 272 236 271 209 313 259 40 25 20 303 304 255 252 431 352 22 14 21 341 317 226 228 376 397 42 35 22 301 353 221 282 355 407 16 22 23 281 334 234 245 284 323 37 18 24 369 365 214 278 302 316 43 44 25 327 318 193 202 263 264 34 25 Misuse of Prescription Drugs, Gender, Age Table 1.53A PAIN RELIEVERS (DEMOGRAPHICS) Gender 12-17(16) 12-17(17) 18-25(16) 18-25(17) Total Male 413 342 1328 1263 3,346 Female 469 425 1126 1197 3217 Table 1.57A TRANQUILIZERS (DEMOGRAPHICS) Gender 12-17(16) 12-17(17) 18-25(16) 18-25(17) Total Male 203 227 914 1004 2,348 Female 231 231 930 877 2269 Table 1.60A STIMULANTS (DEMOGRAPHICS) Gender 12-17(16) 12-17(17) 18-25(16) 18-25(17) Total Male 243 238 1377 1474 3,332 Female 184 214 1201 1071 2670 Table 1.63A SEDATIVES (DEMOGRAPHICS) Gender 12-17(16) 12-17(17) 18-25(16) 18-25(17) Total Male 39 41 114 105 299 Female 61 32 141 94 328

In: Math

##### Workers in several industries were surveyed to determine the proportion of workers who feel their industry...

Workers in several industries were surveyed to determine the proportion of workers who feel their industry is understaffed. In the government sector, 37% of the respondents said they were understaffed, in the health care sector 33% said they were understaffed and in the education sector 28% said they were understaffed (USA Today, January 11, 2010). Suppose that 200 workers were surveyed in each industry.

b) Assuming the same sample size will be used in each industry, how large would the sample need to be to ensure that the margin of error is 5% or less for each of the three confidence intervals? Perform the calculation using an appropriate pilot study proportion as well as a worst case scenario.

In: Math

##### Determine and interpret the linear correlation coefficient, and use linear regression to find a best fit...

 MAG DEPTH 0.70 7.2 0.74 2.2 0.64 13.9 0.39 15.5 0.70 3.0 2.20 2.4 1.98 14.4 0.64 5.7 1.22 6.1 0.20 9.1 1.64 17.2 1.32 8.7 2.95 9.3 0.90 12.3 1.76 7.4 1.01 7.0 1.26 17.1 0.00 8.8 0.65 6.0 1.46 19.1 1.62 12.7 1.83 4.7 0.99 8.6 1.56 6.0 0.40 14.6 1.28 4.9 0.83 19.1 1.34 9.9 0.54 16.1 1.25 4.6 0.92 4.9 1.00 16.1 0.79 14.0 0.79 4.2 1.44 5.9 1.00 5.4 2.24 15.6 2.50 7.7 1.79 15.4 1.25 16.4 1.49 4.9 0.84 8.1 1.42 7.5 1.00 14.1 1.25 11.1 1.42 16.0 1.35 5.5 0.93 7.3 0.40 3.1 1.39 6.0

In: Math

##### The table below summarizes baseline characteristics of patients participating in a clinical trial. a) Are there...

The table below summarizes baseline characteristics of patients participating in a clinical trial. a) Are there any statistically significant differences in baseline characteristics between treatment groups? Justify your answer.

b) Write the hypotheses and the test statistic used to compare ages between groups. (No calculations – just H0, H1 and form of the test statistic).

c) Write the hypotheses and the test statistic used to compare % females between groups. (No calculations – just H0, H1 and form of the test statistic).

d) Write the hypotheses and the test statistic used to compare % females between groups. (No calculations – just H0, H1 and form of the test statistic.) Characteristic Placebo (n = 125) Experimental ( n =125) P Mean (+ SD) Age 54 + 4.5 53 + 4.9 0.7856 % Female 39% 52% 0.0289 % Less than High School Education 24% 22% 0.0986 % Completing High School 37% 36% % Completing Some College 39% 42% Mean (+ SD) Systolic Blood Pressure 136 + 13.8 134 + 12.4 0.4736 Mean (+ SD) Total Cholesterol 214 + 24.9 210 + 23.1 0.8954 % Current Smokers 17% 15% 0.5741 % with Diabetes 8% 3% 0.0438

In: Math

##### The director of Human Resources at a large company wishes to determine if newly instituted training...

The director of Human Resources at a large company wishes to determine if newly instituted training has been effective in reducing work-related injuries. In a random sample of 100 employees taken from the six months before this training began (group 1), she found 15 had suffered a work-related injury. Using a random sample of 150 employees from the six months since the training began (group 2), she found 12 had suffered a work-related injury.
a) Find the 95% confidence interval for this situation.

b) Does it support the idea that the proportion of work-related injuries has decreased with the new training?

Show work - label all your values first before using technology.

In: Math

##### Brooke is moving out of her parents’ house into her first apartment. While packing she realizes...

Brooke is moving out of her parents’ house into her first apartment. While packing she realizes she has a lot of shoes – 42 pair, in fact. She wonders if most women have as many shoes as she does, so for her experimental psychology project she sends surveys to120 women from her college and asks how many pairs of shoes they have. She finds that, on average, the women have15 pair of shoes (sd =2.50). Given this information, does Brooke have statistically more shoes than women in general? Complete the six steps of hypothesis testing by hand and perform the appropriate statisticaltest using SPSS. Then, writean APA formatted 4-part results section.

In: Math

##### The resting pulse rate of a simple random sample of 9 women was recorded yielding a...

The resting pulse rate of a simple random sample of 9 women was recorded yielding a mean resting pulse rate of 76 beats per minute with standard deviation 5. Use this information for this question and the next one. The p-value of a statistical test where the alternative hypothesis is that the mean resting pulse rate is greater than 72 is:
(a) Between 0 and 0.01
(b) Between 0.01 and 0.025
(c) Between 0.025 and 0.05
(d) Between 0.05 and 0.1
(e) Greater than 0.1
The resting pulse rate of a simple random sample of 9 women was recorded yielding a mean resting pulse rate of 76 beats per minute with standard deviation 5. What is a 95% confidence interval for the mean resting pulse rate?
(a) [72.16;79.84]
(b) [72.73;79.27]
(c) [72.9;79.1]
(d) [73.26;78.74]
(e) None of the above.

In: Math

##### To evaluate the effect of a treatment, a sample is obtained from a population with a...

To evaluate the effect of a treatment, a sample is obtained from a population with a mean of μ = 20 and the treatment is administered to the individuals in the sample. After treatment, the sample mean is found to be M = 21.3 with a variance of s2 = 9. a. Assuming that the sample consists of n = 16 individuals, use a two-tailed test with α =0.05 to determine whether the treatment effect is significant and compute both Cohen's d and r2 to measure effect size. are the data sufficient to conclude that the treatment has a significant effect ? b. Assuming that the sample consists of n = 36 individuals, repeat the test and compute both measures of effect size? c. Comparing your answers for parts a and b, how does the size of the sample influence the outcome of a hypothesis test and the measurement of effect size?

In: Math

##### 4.170 Change in Stock Prices. Standard & Poor's maintains one of the most widely followed indices...

4.170 Change in Stock Prices. Standard & Poor's maintains one of the most widely followed indices of large-cap American stocks: the S&P 500. The index includes stocks of 500 companies in industries in the US economy. A random sample of 50 of these companies was selected, and the change in the price of the stock (in dollars) over the 5-day period from August 2 to 6, 2010 was recorded for each company in the sample. The data are available in StockChanges.

a. Use StatKey to calculate a 95% confidence interval for the mean change in all S&P stock prices over these dates using the bootstrap percentiles method. Include a screen shot of your Statkey output with your homework submission, and write the confidence interval below.

b. Use only the confidence interval you created (do not find a p-value) to predict the results of a hypothesis test to see if the mean change for all S&P 500 stocks over this period is different from zero.

i. Define the parameter.

ii. State the hypotheses.

iii. What significance level are you able to use based on the confidence interval?

iv. State the conclusion using nontechnical language.

c. If any error were to occur in the decision to reject or fail to reject, would it be a Type I error or a Type II error?

d. Explain what an error of this type would mean in context.

SPChange
0.29
-0.06
0.34
0.7
0.42
0.22
0.12
0.03
-0.5
0.36
0.03
0.09
-0.12
0.03
-0.47
-3.27
0.35
-0.06
0.01
0.6
0.12
4.86
-0.77
-0.03
0.39
0.1
-0.12
0.47
-0.05
0.06
-0.03
0.15
0.31
-0.15
0.32
-2.66
0.22
-0.03
0.09
0.29
0.16
0.38
0.1
0.21
0.09
0.33
0.18
1.93
0.14
0.03

In: Math

##### . TRUE/FALSE: (Please use one sentence to explain why it is FALSE if you decide that...

. TRUE/FALSE: (Please use one sentence to explain why it is FALSE if you decide that one statement is FALSE)

(a) The regression through origin model is designed to fit count responses only

(b) The Bonferroni method is always the best way of computing joint CI's of the mean responses, i.e., provides the group of CIs with the narrowest ranges which achieves the claimed family confidence coefficient.

(c) When you want to obtain the smallest variance of the "regression coefficient estimate", you might choose to control the response variable values.

(d) We do not have to check the model assumptions when the regression through origin model is used.

In: Math

##### * You wanted to estimate the mean number of vehicles crossing a busy bridge in your...

* You wanted to estimate the mean number of vehicles crossing a busy bridge in your neighborhood each morning during rush hour for the past year. To accomplish this, you stationed yourself and a few assistants at one end of the bridge on 31 randomly selected mornings during the year and counted the number of vehicles crossing the bridge in a 10-minute period during rush hour. You found the mean to be 119 vehicles per minute, with a standard deviation of 31.

(a) Construct the 95% confidence interval for the population mean (vehicles per minute).

.................. - .......................

(b) Construct the 99% confidence interval for the population mean (vehicles per minute)

..................... - .....................

* A college counselor wants to determine the average amount of time first-year students spend studying. He randomly samples 31 students from the freshman class and asks them how many hours a week they study. The mean of the resulting scores is 17 hours, and the standard deviation is 5.8 hours.

(a) Construct the 95% confidence interval for the population mean.
................— ...............

(b) Construct the 99% confidence interval for the population mean.

....................... - ....................

*A cognitive psychologist believes that a particular drug improves short-term memory. The drug is safe, with no side effects. An experiment is conducted in which 8 randomly selected subjects are given the drug and then given a short time to memorize a list of 10 words. The subjects are then tested for retention 15 minutes after the memorization period. The number of words correctly recalled by each subject is as follows: 6, 11, 12, 4, 6, 7, 8, 6. Over the past few years, the psychologist has collected a lot of data using this task with similar subjects. Although he has lost the original data, he remembers that the mean was 4.9 words correctly recalled and that the data were normally distributed.

(a) On the basis of these data, what can we conclude about the effect of the drug on short-term memory? Use α = 0.052 tail in making your decision.

 tobt =

tcrit = ±

In: Math