Question

In: Civil Engineering

A piston–cylinder device contains steam that undergoes a reversible thermodynamic cycle. Initially the steam is at...

A piston–cylinder device contains steam that undergoes a reversible thermodynamic cycle. Initially the steam is at 400 kPa and 350oC with a volume of 0.3 m3. The steam is first expanded isothermally to 150 kPa, then compressed adiabatically to the initial pressure, and finally compressed at the constant pressure to the initial state. Determine (a) the net work and heat transfer for the cycle after you calculate the work and heat interaction for each process and (b) show the cyclic process on a PV diagram

Solutions

Expert Solution


Related Solutions

A piston-cylinder device initially contains 0.20(kg) of steam at 3.5(MPa), 300(C). The steam loses heat to...
A piston-cylinder device initially contains 0.20(kg) of steam at 3.5(MPa), 300(C). The steam loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 220C. A) Sketch the above process on a P-v chart, indicating values B) Determine the pressureand qualityof the final mixture. C) Determine the boundary work (in kJ)
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows:...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows: 1-2 isentropic compression from an initial temperature T1 5 208C with a compression ratio r 5 5 2-3 constant pressure heat addition 3-1 constant volume heat rejection The gas has constant specific heats with cv 5 0.7 kJ/kg·K and R 5 0.3 kJ/kg·K. (a) Sketch the P-v and T-s diagrams for the cycle. (b) Determine the heat and work interactions for each pro- cess,...
Thermodynamic In a piston-cylinder air at 100 kPa and 15°C undergoes the following cycle. First, it...
Thermodynamic In a piston-cylinder air at 100 kPa and 15°C undergoes the following cycle. First, it is compressed isentropically to a compression ratio of 20. Then 1800 kJ/kg of heat is transferred to the air at constant pressure. Afterwards the air expands isentropically. In the last step, heat is removed at constant volume until the air reaches its original state. Assuming air behaves as an ideal gas and with Cp and Cv independent of temperature, determine the: (a) pressure and...
Four kilograms of steam in a piston/cylinder device at 400 kPa and 175 °C undergoes isothermal...
Four kilograms of steam in a piston/cylinder device at 400 kPa and 175 °C undergoes isothermal and mechanically reversible process to a final pressure such that the steam is completely condensed (i.e., became a saturated liquid). Determine Q and W for this process: (b) Using generalized correlations and Equations (6.70 – 6.74). Comment on the accuracy of your answer. [Answer: Q = -9,461 kJ, W = 1494.9 kJ]
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg...
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg of air at 300 kPa and 27ºC. The mass of the piston is such that a pressure of 600 kPa is required to move it upward. Heat is now transferred to the air until its volume doubles. a) Determine the work done by the air and b) the total heat transferred to the air during this process. c) Also, sketch the process on a...
A piston-cylinder device contains 0.56 kg of steam at 300 degrees C and 1.4 MPa. Steam...
A piston-cylinder device contains 0.56 kg of steam at 300 degrees C and 1.4 MPa. Steam is cooled at constant pressure until one-half of the mass condenses. (a) Find the final temperature. T1= _______ degrees celcius (b) Determine the volume change in m3
A piston-cylinder device contains a saturated mixture of steam and water having a total mass of...
A piston-cylinder device contains a saturated mixture of steam and water having a total mass of 0.5 kg at a pressure of 160 kPa and an initial volume of 100 liters. Heat is then added and the fluid expands at constant pressure until it reaches a saturated vapor state. a) Draw a diagram representing the process showing the initial and final states of the system. b) Sketch this process on a P-v diagram with respect to the saturation lines, critical...
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a...
Steam, initially at 700 lbf/in.2, 550°F undergoes a polytropic process in a piston–cylinder assembly to a final pressure of 2200 lbf/in.2 Kinetic and potential energy effects are negligible. Determine the heat transfer, in Btu per lb of steam, for a polytropic exponent of 1.4, (a) using data from the steam tables. (b) assuming ideal gas behavior.
A piston–cylinder device contains 5 kg of steam at 100°C with a quality of 50 percent....
A piston–cylinder device contains 5 kg of steam at 100°C with a quality of 50 percent. This steam undergoes two processes as follows: (1-2) Heat is transferred to the steam in a reversible manner while the temperature is held constant until the steam exists as a saturated vapor.(2-3) The steam expands in an adiabatic, reversible process until the pressure is 15 kPa. Sketch these processes with respect to the saturation lines on a single TS diagram and determine the heat...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute and 150 oC. It is then heated so it expands at constant pressure until it reaches a temperature of 400 oC. Draw a diagram of the device showing system boundary and flows of energy. What boundary work is done by the cylinder, in kJ, during the expansion? State your assumptions. 1. What is the mass of steam in the piston-cylinder? 2. How much heat...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT