In: Math
Data for the mean mass of various animal species and their corresponding metabolic rate is provided below. It is believed that the data follows the power model. i.e. ?????????? = ? (????)? where α and β are the regression coefficients.
| 
 Animal  | 
 Mass (kg)  | 
 Metabolism (watts)  | 
| 
 Cow  | 
 400  | 
 270  | 
| 
 Human  | 
 70  | 
 82  | 
| 
 Sheep  | 
 45  | 
 50  | 
| 
 Hen  | 
 2  | 
 4.8  | 
| 
 Rat  | 
 0.3  | 
 1.45  | 
| 
 Dove  | 
 0.16  | 
 0.97  | 
Show by hand with pen and paper the linearisation of this nonlinear model.
answer:
matlab code:
 x = [400 70 45 2 .3 .16]; % x data for mass
y = [270 82 50 4.8 1.55 0.95]; % given y data for metabolism
p = polyfit(x,y,2); % fitting the data using polyfit function
Y = polyval(p,x); % metabolism evaluated using
Rsqu = 1-(sum((y-Y).^2)/sum((y-mean(y)).^2)); % Computing the r^2
fprintf('metabolism = %f mass^2+ %f mass + %f\n',p); % Printing the nonlinear equation
fprintf('r^2 = %f\n',Rsqu); % Printing r^2
% Part B
plot(x,y,'rd',0:500,polyval(p,0:500),'b'); % Plotting the data and interpolate function
Mass_Tiger = 200; % Tiger mass
Meta_Tiger = polyval(p,Mass_Tiger); % evaluating tiger metabolism
hold on;
plot(Mass_Tiger,Meta_Tiger,'dk'); % plotting the tiger details in graph
Title = sprintf('metabolism = %f mass^2+ %f mass + %f',p); % using sprintf
title(Title); % Adding title
xlabel('Mass');ylabel('Metabolism'); % adding axes labels
metabolism = -0.001371 mass^2+ 1.220664 mass + 1.078511
r^2 = 0.999686
matlab output:





