Question

In: Math

Use the given transformation to evaluate the integral. (12x + 8y) dA R , where R...

Use the given transformation to evaluate the integral. (12x + 8y) dA R , where R is the parallelogram with vertices (−1, 3), (1, −3), (2, −2), and (0, 4) ; x = 1/ 4 (u + v), y = 1/ 4 (v − 3u)

Solutions

Expert Solution


Related Solutions

using / for integral Evaluate the double integral //R cos( (y-x)/(y+x) )dA where R is the...
using / for integral Evaluate the double integral //R cos( (y-x)/(y+x) )dA where R is the trapezoidal region with vertices (1,0), (2,0), (0,2), and (0,1)
Use the transformation ,  to express  as an iterated integral in the order dudv, where R is the...
Use the transformation ,  to express  as an iterated integral in the order dudv, where R is the triangular region with vertices (0,0), (1,4), and (4,1).
1.) Evaluate the given definite integral. Integral from 4 to 5 dA∫45 (0.2e^−0.2A +3/A) dA 2.)...
1.) Evaluate the given definite integral. Integral from 4 to 5 dA∫45 (0.2e^−0.2A +3/A) dA 2.) Evaluate the definite integral. Integral from negative 1 to 1 dx∫−1 1 (x^2+1) dx 3.) Evaluate the definite integral. Integral from 0 to 2 dx∫02 (2x^2+x+6) dx 4.) Evaluate the definite integral. Integral from 1 to 4 left dx∫14 (x^3/2+x^1/2−x^−1/2) dx 5.) Evaluate the definite integral. Integral from negative 2 to negative 1 dx∫−2−1 (3x^−4) dx
evaluate the integral by making an appropriate change of variables double integral of 5sin(25x^2+64y^2) dA, where...
evaluate the integral by making an appropriate change of variables double integral of 5sin(25x^2+64y^2) dA, where R is the region in the first quadrant bounded by the ellipse 25x^2 +64y^2=1
1) Evaluate the double integral ∬Dx^2 y dA, where D is the top half of the...
1) Evaluate the double integral ∬Dx^2 y dA, where D is the top half of the disc with center the origin and radius 2 by changing to polar coordinates. 2) Use a double integral to find the area of one loop of the rose r= 6cos (3θ). 3) Use polar coordinates to find the volume of the solid below the paraboloid z=50−2x^2−2y^2 and above the xy-plane.
Find the double integral of region (2x-y)dA, where region R is in the first quadrant enclosed...
Find the double integral of region (2x-y)dA, where region R is in the first quadrant enclosed by the circle x2+y2=4 and the lines x=0 and y=x
1. Evaluate the double integral for the function f(x,y) and the given region R. R is...
1. Evaluate the double integral for the function f(x,y) and the given region R. R is the rectangle defined by -2  x  3 and 1   y  e4 2. Evaluate the double integral    f(x, y) dA R for the function f(x, y) and the region R. f(x, y) = y x3 + 9 ; R is bounded by the lines x = 1, y = 0, and y = x. 3. Find the average value of the function f(x,y) over the plane region R....
Evaluate the line integral ∫CF⋅d r where F=〈4sinx,cosy,xz〉 and C is the path given by r(t)=(t^3,3t^2,3t)...
Evaluate the line integral ∫CF⋅d r where F=〈4sinx,cosy,xz〉 and C is the path given by r(t)=(t^3,3t^2,3t) for 0≤t≤1 ∫CF⋅d r=
Evaluate the line integral, where C is the given curve, where C consists of line segments...
Evaluate the line integral, where C is the given curve, where C consists of line segments from (1, 2, 0) to (-3, 10, 2) and from (-3, 10, 2) to (1, 0, 1). C zx dx + x(y − 2) dy
Evaluate the line integral C F · dr, where C is given by the vector function...
Evaluate the line integral C F · dr, where C is given by the vector function r(t). F(x, y, z) = sin(x) i + cos(y) j + xz k r(t) = t5 i − t4 j + t k, 0 ≤ t ≤ 1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT