Question

In: Advanced Math

Consider the nonlinear equation f(x) = x3− 2x2 − x + 2 = 0. (a) Verify...

Consider the nonlinear equation f(x) = x3− 2x2 − x + 2 = 0.

(a) Verify that x = 1 is a solution.

(b) Convert f(x) = 0 to a fixed point equation g(x) = x where this is not the fixed point iteration implied by Newton’s method, and verify that x = 1 is a fixed point of g(x) = x.

(c) Convert f(x) = 0 to the fixed point iteration implied by Newton’s method and again verify that x = 1 is a fixed point.

(d) Write MATLAB code to iterate on your fixed point iteration as well as the fixed point iteration implied by Newton. Compare these results based on x0 = 1.1. How fast did Newton converge? How fast did your iteration from part b converge (or did it at all)? What does the theory of fixed points tell you about these convergence results?

Solutions

Expert Solution



Related Solutions

Let f(x) = x3 − 2x2. Find the point(s) on the graph of f where the...
Let f(x) = x3 − 2x2. Find the point(s) on the graph of f where the tangent line is horizontal. (x, y) = 0 (smaller x-value) (x, y) = (larger x-value) B) A straight line perpendicular to and passing through the point of tangency of the tangent line is called the normal to the curve. Find an equation of the tangent line and the normal to the curve y = x3 - 3x + 1 at the point (3, 19)....
Consider the equation xy′′+y′+y= 0, x >0. a) Verify that 0 is a regular singular point....
Consider the equation xy′′+y′+y= 0, x >0. a) Verify that 0 is a regular singular point. (b) Find the indicial equation and its roots. c) Determine the recurrence relation(you do NOT need to find the solutions).
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 −...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 9x2 − 21x + 9 (a) Find the interval on which f is increasing. (Enter your answer using interval notation.) Find the interval on which f is decreasing. (Enter your answer using interval notation.) (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection point. (x, y) = Find the interval on which f...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 −...
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 9 (a) Find the interval on which f is increasing. (Enter your answer using interval notation.) Incorrect: Your answer is incorrect. Find the interval on which f is decreasing. (Enter your answer using interval notation.) Incorrect: Your answer is incorrect. (b) Find the local minimum and maximum values of f. local minimum value local maximum value (c) Find the inflection...
Find [A]^-1 for the following equation using LU Decomposition and {x}. 3x1 - 2x2 + x3...
Find [A]^-1 for the following equation using LU Decomposition and {x}. 3x1 - 2x2 + x3 = -10 2x1 + 6x2 - 4x3 = 44 -x1 - 2x2 + 5x3 = -26
draw, for values of x between -2 and +2, f(x) = x2, f(x) = 2x2 and...
draw, for values of x between -2 and +2, f(x) = x2, f(x) = 2x2 and f(x) = 3x2
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
Find f. f ''(x) = x−2,    x > 0,    f(1) = 0,    f(4) = 0 f(x)=
For the system 2x1 − 4x2 + x3 + x4 = 0, x1 − 2x2 +...
For the system 2x1 − 4x2 + x3 + x4 = 0, x1 − 2x2 + 5x4 = 0, find some vectors v1, . . . , vk such that the solution set to this system equals span(v1, . . . , vk).
consider the function f(x) = 1 + x3  e-.3x a. what is f'(x) b. what is f''(x)...
consider the function f(x) = 1 + x3  e-.3x a. what is f'(x) b. what is f''(x) c. what are the critical points of f(x) d. are the critical points a local min or local max or neither? e. find the inflection points f. if we define f(x) to have the domain of [2,50] compute the global extreme of f(x) on that interval
Study the roots of the nonlinear equation f(x) = cos(x) + (1 /(1 + e^2x)) both...
Study the roots of the nonlinear equation f(x) = cos(x) + (1 /(1 + e^2x)) both theoretically and numerically. (a) Plot f(x) on the interval x ∈ [−15, 15] and describe the overall behaviour of the function as well as the number and location of its roots. Use the “zoom” feature of Matlab’s plotting window (or change the axis limits) in order to ensure that you are identifying all roots – you may have to increase your plotting point density...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT