Question

In: Physics

Consider a spherical shell of mass density ?m = (A/r) exp[ -(r/R)2], where A = 4...

Consider a spherical shell of mass density ?m = (A/r) exp[ -(r/R)2], where A = 4 x 104 kg m-2. The inner and outer shell radii are 3R and 4R respectively where R = 6 x 106. Find the inward gravitational acceleration on a particle of mass mp at a position of 4R. The spherical di erent is dV = r2 dr sin? d? d?.

A) 9.00 m/s2

B) 2.36 m/s2

C) 9.3 m/s2

D) 2.3 m/s2

E) 3.00 m/s2

Solutions

Expert Solution

The answer is C) 9.3 m/s2

I had to assume the mass density as (A/r) exp[+(r/R)2]. Otherwise with a negative exponential the answer comes out to be of the order of 10^(-11).


Related Solutions

Show that the moment of inertia of a spherical shell of radius R and mass M...
Show that the moment of inertia of a spherical shell of radius R and mass M about an axis through its centre is 2/3 MR2. Show also that the moment of inertia of a uniform solid sphere of radius R and mass M is 2/5MR2. The spheres are allowed to roll (from rest), without slipping a distance L down a plane inclined at a angle θ to the horizontal. Find expressions for the speeds of the spheres at the bottom...
Consider a spherical shell with radius R and surface charge density σ. By integrating the electric...
Consider a spherical shell with radius R and surface charge density σ. By integrating the electric field, find the potential outside and inside the shell. You should find that the potential is constant inside the shell. Why?
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
A thin-walled, hollow spherical shell of mass m and radius r starts from rest and rolls...
A thin-walled, hollow spherical shell of mass m and radius r starts from rest and rolls without slipping down the track shown in the figure (Figure 1) . Points A and Bare on a circular part of the track having radius R. The diameter of the shell is very small compared to h0 and R, and rolling friction is negligible. a) What is the minimum height h0 for which this shell will make a complete loop-the-loop on the circular part...
surface charge density which is σ=σ0 cosθ is distributed on the spherical shell with radius R...
surface charge density which is σ=σ0 cosθ is distributed on the spherical shell with radius R .Using the Laplace eqn find electric potential outside the sphere .
A spherical shell with radius R and superficial charge density, It rotates around the z-axis through...
A spherical shell with radius R and superficial charge density, It rotates around the z-axis through its center with a constant angular frequency. The magnetic field formed in the center as a result of the rotation of the spherical shell Found it.
Consider a thin spherical shell located between r = 0.49a0 and 0.51a0. For the n =...
Consider a thin spherical shell located between r = 0.49a0 and 0.51a0. For the n = 2, l = 1 state of hydrogen, find the probability for the electron to be found in a small volume element that subtends a polar angle of 0.11° and an azimuthal angle of 0.25° if the center of the volume element is located at: θ=50°, ϕ=20°. Probability when n=2,l=1,m=0 Probability when n=2,l=1,m=±1
Consider a thin spherical shell located between r = 0.49a0 and 0.51a0. For the n =...
Consider a thin spherical shell located between r = 0.49a0 and 0.51a0. For the n = 2, l = 1 state of hydrogen, find the probability for the electron to be found in a small volume element that subtends a polar angle of 0.11° and an azimuthal angle of 0.25° if the center of the volume element is located at: θ=5°, ϕ=35°. Probability when n=2,l=1,m=0
Consider a uniform density sphere of mass M and radius R in hydrostatic equilibrium with zero...
Consider a uniform density sphere of mass M and radius R in hydrostatic equilibrium with zero surface pressure. Derive expressions for the pressure P(r) and the gravitational potential phi(r) in terms of r, M, R, G and constants.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT