Question

In: Physics

A spherical object with a radius r = 3.2×10−6 m and mass m is in equilibrium...

A spherical object with a radius r = 3.2×10−6 m and mass m is in equilibrium at a distance d = 6.0×1012 m from a star due to the cancellation of gravitational and radiation forces. Let Ms = 4.7×1032 kg be the mass of the star, and Ps = 9.9×1029 W be the total average power radiated by it uniformly in all directions. You will also need the gravitational constant G = 6.7×10−11 Nm2/kg2 and the speed of light c = 3×108 m/s in the following questions.

a.) What is the intensity of the star's electromagnetic radiation at the position of the object?

b.) What is the average radiation force Frad on the object if all the incoming light is absorbed by it?

c.) What is the magnitude of the gravitational acceleration ag of the object due to the star?

d.) Find the mass density (mass/volume) of the object if it is in equilibrium under radiation and gravitational forces.

Solutions

Expert Solution


Related Solutions

A spherical object with a radius rrr = 4.2×10−7 mm  and mass m is in...
A spherical object with a radius rrr = 4.2×10−7 mm  and mass m is in equilibrium at a distance ddd = 9.1×1012 mm  from a star due to the cancellation of gravitational and radiation forces. Let MsMsM = 2.1×1032 kgkg be the mass of the star, and PsPsP = 5.9×1028 WW be the total average power radiated by it uniformly in all directions. You will also need the gravitational constant GGG = 6.7×10−11 Nm2/kg2Nm2/kg2  and the speed of light...
Show that the moment of inertia of a spherical shell of radius R and mass M...
Show that the moment of inertia of a spherical shell of radius R and mass M about an axis through its centre is 2/3 MR2. Show also that the moment of inertia of a uniform solid sphere of radius R and mass M is 2/5MR2. The spheres are allowed to roll (from rest), without slipping a distance L down a plane inclined at a angle θ to the horizontal. Find expressions for the speeds of the spheres at the bottom...
A spherical bowling ball with mass m = 3.3 kg and radius R = 0.11 m...
A spherical bowling ball with mass m = 3.3 kg and radius R = 0.11 m is thrown down the lane with an initial speed of v = 8.9 m/s. The coefficient of kinetic friction between the sliding ball and the ground is ? = 0.28. Once the ball begins to roll without slipping it moves with a constant velocity down the lane. What is the magnitude of the angular acceleration of the bowling ball as it slides down the...
a) Consider an object of mass m=0.527kg rotates on circular path of radius r=1.82 m. Object...
a) Consider an object of mass m=0.527kg rotates on circular path of radius r=1.82 m. Object starts at rest and slowly increase its angular velocity at constant angular acceleration of 0.128 rad/s2. I. Find the angular velocity of the object after 35 seconds? II. Find the magnitude and direction of resultant linear acceleration after 35 seconds? III. Find the net force acting on the object after 35 seconds? b) Consider the same above object of mass m=0.527kg rotates around its...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on...
a uniform spherical shell of mass M and radius R rotates about a vertical axis on frictionless bearing. A massless cord passes around the equator of the shell, over a pulley of rotational inertia I and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object after it has fallen a distance h from rest?...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm...
A uniform spherical shell of mass M = 2.0 kg and radius R = 13.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 1.92×10-3 kg m2 and radius r = 4.0 cm, and its attached to a small object of mass m = 4.0 kg. There is no friction on the pulley's axle; the cord does not slip...
Consider a uniform density sphere of mass M and radius R in hydrostatic equilibrium with zero...
Consider a uniform density sphere of mass M and radius R in hydrostatic equilibrium with zero surface pressure. Derive expressions for the pressure P(r) and the gravitational potential phi(r) in terms of r, M, R, G and constants.
A spherical satellite of radius 4.8 m and mass M = 210 kg is originally moving...
A spherical satellite of radius 4.8 m and mass M = 210 kg is originally moving with velocity satellite,i = < 2800, 0, 0 > m/s, and is originally rotating with an angular speed ω1 = 2 radians/second, in the direction shown in the diagram. A small piece of space junk of mass m = 3.9 kg is initially moving toward the satellite with velocity junk,i = < -2600, 0, 0 > m/s. The space junk hits the edge of...
An object with a charge of -3.2 μC and a mass of 4.5×10−2 kg experiences an...
An object with a charge of -3.2 μC and a mass of 4.5×10−2 kg experiences an upward electric force, due to a uniform electric field, equal in magnitude to its weight. Find the magnitude of the electric field. Express your answer using two significant figures. Find the direction of the electric field. If the electric charge on the object is doubled while its mass remains the same, find the direction and magnitude of its acceleration. Express your answer using three...
A hollow sphere of mass M and radius R is hit by a pendulum of mass...
A hollow sphere of mass M and radius R is hit by a pendulum of mass m and length L that is raised at an angle θ. After the collision the pendulum comes to a stop and the sphere rolls forward into a spring with stiffness k on an incline of ϕ. Find an expression for how far ∆x the spring compresses along the incline. Use only m, L, M, R, θ, ϕ, k and appropriate constants.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT