In: Civil Engineering
How does an interior designer blend lighting design into overall design?
Architectural lighting design is a field within architecture, interior design and electrical engineering that is concerned with the design of lighting systems, including natural light, electric light, or both, to serve human needs.
The design process takes account of:
· the kind of human activity for which lighting is to be provided
· the amount of light required
· the color of the light as it may affect the views of particular objects and the environment as a whole
· the distribution of light within the space to be lighted, whether indoor or outdoor
· the effect of the lightened system itself on the user
The aim of lighting design is the human response, to see clearly and without discomfort. The objective of architectural lighting design is to further the design of architecture or the experience of buildings and other physical structures.
Lighting fixtures come in a wide variety of styles for various functions. The most important functions are as a holder for the light source, to provide directed light and to avoid visual glare. Some are very plain and functional, while some are pieces of art in themselves. Nearly any material can be used, so long as it can tolerate the excess heat and is in keeping with safety codes.
An important property of light fixtures is the luminous efficacy or wall-plug efficiency, meaning the amount of usable light emanating from the fixture per used energy, usually measured in lumen per watt. A fixture using replaceable light sources can also have its efficiency quoted as the percentage of light passed from the "bulb" to the surroundings. The more transparent the lighting fixture is, the higher efficacy. Shading the light will normally decrease efficiency but increase the directionality and the visual comfort probability.
Photometric studies (also sometimes referred to as "layouts" or "point by points") are often used to simulate lighting designs for projects before they are built or renovated. This enables architects, lighting designers, and engineers to determine whether a proposed lighting setup will deliver the amount of light intended. They will also be able to determine the contrast ratio between light and dark areas. In many cases these studies are referenced against IESNA or CIBSE recommended lighting practices for the type of application. Depending on the type of area, different design aspects may be emphasized for safety or practicality (i.e. such as maintaining uniform light levels, avoiding glare or highlighting certain areas). A specialized lighting design application is often used to create these, which typically combine the use of two-dimensional digital CAD drawings and lighting simulation software. To the extent that a hot surface emits thermal radiation but is not an ideal black-body radiator, the color temperature of the light is not the actual temperature of the surface. An incandescent lamp's light is thermal radiation, and the bulb approximates an ideal black-body radiator, so its color temperature is essentially the temperature of the filament.
Many other light sources, such as fluorescent lamps, or LEDs (light emitting diodes) emit light primarily by processes other than thermal radiation. This means that the emitted radiation does not follow the form of a black-body spectrum. These sources are assigned what is known as a correlated color temperature (CCT). CCT is the color temperature of a black-body radiator which to human color perception most closely matches the light from the lamp. Because such an approximation is not required for incandescent light, the CCT for an incandescent light is simply its unadjusted temperature, derived from the comparison to a black-body radiator.
Methods
For simple installations, hand-calculations based on tabular data can be used to provide an acceptable lighting design. More critical or optimized designs now routinely use mathematical modeling on a computer.
Based on the positions and mounting heights of the fixtures, and their photometric characteristics, the proposed lighting layout can be checked for uniformity and quantity of illumination. For larger projects or those with irregular floor plans, lighting design software can be used. Each fixture has its location entered, and the reflectance of walls, ceiling, and floors can be entered. The computer program will then produce a set of contour charts overlaid on the project floor plan, showing the light level to be expected at the working height. More advanced programs can include the effect of light from windows or skylights, allowing further optimization of the operating cost of the lighting installation. The amount of daylight received in an internal space can typically be analyzed by undertaking a daylight factor calculation.
The Zonal Cavity Method is used as a basis for both hand, tabulated, and computer calculations. This method uses the reflectance coefficients of room surfaces to model the contribution to useful illumination at the working level of the room due to light reflected from the walls and the ceiling. Simplified photometric values are usually given by fixture manufacturers for use in this method.
Computer modeling of outdoor flood lighting usually proceeds directly from photometric data. The total lighting power of a lamp is divided into small solid angular regions. Each region is extended to the surface which is to be lit and the area calculated, giving the light power per unit of area. Where multiple lamps are used to illuminate the same area, each one's contribution is summed. Again the tabulated light levels (in lux or foot-candles) can be presented as contour lines of constant lighting value, overlaid on the project plan drawing. Hand calculations might only be required at a few points, but computer calculations allow a better estimate of the uniformity and lighting level.