In: Statistics and Probability
The average number of people in a family that received welfare for various years is given below.
Year | Welfare family size |
---|---|
1969 | 4.0 |
1973 | 3.6 |
1975 | 3.2 |
1979 | 3.0 |
1983 | 3.0 |
1988 | 3.0 |
1991 | 2.9 |
Part (a)
Calculate the least squares line. Put the equation in the form of:
? = a+ bx.
(Round your answers to three decimal places.)
? = ________ + _______ x
Part (b)
Find the estimated welfare family size in 1972. (Use
your equation from part (a). Round your answer to one decimal
place.)
people
_______________
Find the estimated welfare family size in 1989. (Use your equation
from part (a). Round your answer to one decimal place.)
people
________________
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: Welfare family size
Independent Variable: Year
Welfare family size = 88.720616 - 0.043176816 Year
Sample size: 7
R (correlation coefficient) = -0.85326872
R-sq = 0.72806751
Estimate of error standard deviation: 0.23287573
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 88.720616 | 23.362318 | ? 0 | 5 | 3.7975947 | 0.0127 |
Slope | -0.043176816 | 0.01180077 | ? 0 | 5 | -3.6588136 | 0.0146 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 0.72598732 | 0.72598732 | 13.386917 | 0.0146 |
Error | 5 | 0.27115554 | 0.054231108 | ||
Total | 6 | 0.99714286 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new |
---|---|---|---|---|
1972 | 3.5759354 | 0.12662773 | (3.2504285, 3.9014424) | (2.894534, 4.2573369) |
1989 | 2.8419296 | 0.14055165 | (2.4806301, 3.2032291) | (2.1427225, 3.5411366) |
Hence,
Part a):
? = 88.721 + (-0.043) x
Part b):
Estimated welfare family size in 1972 = 3.6
Estimated welfare family size in 1989 = 2.8